RESUMO
Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.
Assuntos
Desenho de Equipamento , Pele , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Humanos , Silício , Nanotubos de Carbono , TatoRESUMO
Next-generation light-emitting displays on skin should be soft, stretchable and bright1-7. Previously reported stretchable light-emitting devices were mostly based on inorganic nanomaterials, such as light-emitting capacitors, quantum dots or perovskites6-11. They either require high operating voltage or have limited stretchability and brightness, resolution or robustness under strain. On the other hand, intrinsically stretchable polymer materials hold the promise of good strain tolerance12,13. However, realizing high brightness remains a grand challenge for intrinsically stretchable light-emitting diodes. Here we report a material design strategy and fabrication processes to achieve stretchable all-polymer-based light-emitting diodes with high brightness (about 7,450 candela per square metre), current efficiency (about 5.3 candela per ampere) and stretchability (about 100 per cent strain). We fabricate stretchable all-polymer light-emitting diodes coloured red, green and blue, achieving both on-skin wireless powering and real-time displaying of pulse signals. This work signifies a considerable advancement towards high-performance stretchable displays.
RESUMO
Space heating and cooling consume ~13% of global energy every year. The development of advanced materials that promote energy savings in heating and cooling is gaining increasing attention. To thermally isolate the space of concern and minimize the heat exchange with the outside environment has been recognized as one effective solution. To this end, here, we develop a universal category of colorful low-emissivity paints to form bilayer coatings consisting of an infrared (IR)-reflective bottom layer and an IR-transparent top layer in colors. The colorful visual appearance ensures the aesthetical effect comparable to conventional paints. High mid-infrared reflectance (up to ~80%) is achieved, which is more than 10 times as conventional paints in the same colors, efficiently reducing both heat gain and loss from/to the outside environment. The high near-IR reflectance also benefits reducing solar heat gain in hot days. The advantageous features of these paints strike a balance between energy savings and penalties for heating and cooling throughout the year, providing a comprehensive year-round energy-saving solution adaptable to a wide variety of climatic zones. Taking a typical midrise apartment building as an example, the application of our colorful low-emissivity paints can realize positive heating, ventilation, and air conditioning energy saving, up to 27.24 MJ/m2/y (corresponding to the 7.4% saving ratio). Moreover, the versatility of the paint, along with its applicability to diverse surfaces of various shapes and materials, makes the paints extensively useful in a range of scenarios, including building envelopes, transportation, and storage.
RESUMO
The laser scattering characteristic of pavement is one of the important factors that affect the detection performance of optical sensors such as lidars. Because the wavelength of laser does not match the roughness of the asphalt pavement, the common analytical approximation model of electromagnetic scattering is not applicable in this case, so it is difficult to calculate the laser scattering distribution of the pavement accurately and effectively. According to the self-similarity of the asphalt pavement profile, a fractal two-scale method (FTSM) based on fractal structure is proposed in this paper. We used the Monte Carlo method to obtain the bidirectional scattering intensity distribution (SID) and the back SID of the laser on the asphalt pavement with different roughness. Then we designed a laser scattering measurement system to verify the simulation results. We calculated and measured the SIDs of s-light and p-light of three asphalt pavements with different roughness (σ=0.34 mm; 1.74 mm; 3.08 mm). The results show that, compared with the traditional analytical approximation methods, the results of FTSM are closer to the experimental results. Compared with the single-scale model based on the Kirchhoff approximation, FTSM has a significant improvement in computational accuracy and speed.
RESUMO
Flower-like polyacrylonitrile (PAN) particles have shown promising performance for numerous applications, including sensors, catalysis, and energy storage. However, the detailed formation process of these unique structures during polymerization has not been investigated. Here, we elucidate the formation process of flower-like PAN particles through a series of in situ and ex situ experiments. We have the following key findings. First, lamellar petals within the flower-like particles were predominantly orthorhombic PAN crystals. Second, branching of the lamellae during the particle formation arose from PAN's fast nucleation and growth on pre-existing PAN crystals, which was driven by the poor solubility of PAN in the reaction solvent. Third, the particles were formed to maintain a constant center-to-center distance during the reaction. The separation distance was attributed to strong electrostatic repulsion, which resulted in the final particles' spherical shape and uniform size. Lastly, we employed the understanding of the formation mechanism to tune the PAN particles' morphology using several experimental parameters including incorporating comonomers, changing temperature, adding nucleation seeds, and adjusting the monomer concentration. These findings provide important insights into the bottom-up design of advanced nanostructured PAN-based materials and controlled polymer nanostructure self-assemblies.
Assuntos
Resinas Acrílicas , Polímeros , Tamanho da Partícula , Polímeros/química , SolventesRESUMO
Glue-type bio-adhesives are in high demand for many applications, including hemostasis, wound closure, and integration of bioelectronic devices, due to their injectable ability and in situ adhesion. However, most glue-type bio-adhesives cannot be used for short-term tissue adhesion due to their weak instant cohesion. Here, we show a novel glue-type bio-adhesive based on the phase separation of proteins and polysaccharides by functionalizing polysaccharides with dopa. The bio-adhesive exhibits increased adhesion performance and enhanced phase separation behaviors. Because of the cohesion from phase separation and adhesion from dopa, the bio-adhesive shows excellent instant and long-term adhesion performance for both organic and inorganic substrates. The long-term adhesion strength of the bio-glue on wet tissues reached 1.48 MPa (shear strength), while the interfacial toughness reached ~880 J m-2. Due to the unique phase separation behaviors, the bio-glue can even work normally in aqueous environments. At last, the feasibility of this glue-type bio-adhesive in the adhesion of various visceral tissues in vitro was demonstrated to have excellent biocompatibility. Given the convenience of application, biocompatibility, and robust bio-adhesion, we anticipate the bio-glue may find broad biomedical and clinical applications.
Assuntos
Adesivos , Di-Hidroxifenilalanina , PolissacarídeosRESUMO
1,2-Dimethoxyethane (DME) is a common electrolyte solvent for lithium metal batteries. Various DME-based electrolyte designs have improved long-term cyclability of high-voltage full cells. However, insufficient Coulombic efficiency at the Li anode and poor high-voltage stability remain a challenge for DME electrolytes. Here, we report a molecular design principle that utilizes a steric hindrance effect to tune the solvation structures of Li+ ions. We hypothesized that by substituting the methoxy groups on DME with larger-sized ethoxy groups, the resulting 1,2-diethoxyethane (DEE) should have a weaker solvation ability and consequently more anion-rich inner solvation shells, both of which enhance interfacial stability at the cathode and anode. Experimental and computational evidence indicates such steric-effect-based design leads to an appreciable improvement in electrochemical stability of lithium bis(fluorosulfonyl)imide (LiFSI)/DEE electrolytes. Under stringent full-cell conditions of 4.8 mAh cm-2 NMC811, 50 µm thin Li, and high cutoff voltage at 4.4 V, 4 M LiFSI/DEE enabled 182 cycles until 80% capacity retention while 4 M LiFSI/DME only achieved 94 cycles. This work points out a promising path toward the molecular design of non-fluorinated ether-based electrolyte solvents for practical high-voltage Li metal batteries.
RESUMO
Strategies to improve stretchability of polymer semiconductors, such as introducing flexible conjugation-breakers or adding flexible blocks, usually result in degraded electrical properties. In this work, we propose a concept to address this limitation, by introducing conjugated rigid fused-rings with optimized bulky side groups and maintaining a conjugated polymer backbone. Specifically, we investigated two classes of rigid fused-ring systems, namely, benzene-substituted dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (Ph-DBTTT) and indacenodithiophene (IDT) systems, and identified molecules displaying optimized electrical and mechanical properties. In the IDT system, the polymer PIDT-3T-OC12-10% showed promising electrical and mechanical properties. In fully stretchable transistors, the polymer PIDT-3T-OC12-10% showed a mobility of 0.27 cm2 V-1 s-1 at 75% strain and maintained its mobility after being subjected to hundreds of stretching-releasing cycles at 25% strain. Our results underscore the intimate correlation between chemical structures, mechanical properties, and charge carrier mobility for polymer semiconductors. Our described molecular design approach will help to expedite the next generation of intrinsically stretchable high-performance polymer semiconductors.
RESUMO
Dual-functional polymeric system combining shape memory with self-healing properties has attracted increasingly interests of researchers, as both of these properties are intelligent and promising characteristics. Moreover, shape memory polymer that functions at human body temperature (37 °C) are desirable because of their potential applications in biomedical field. Herein, we designed a polymer network with a permanent covalent crosslinking and abundant weak hydrogen bonds. The former introduces elasticity responsible and maintain the permanent shape, and the latter contributes to the temporary shape via network rearrangement. The obtained PDMS-COO-E polymer films exhibit excellent mechanical properties and the capability to efficiently self-heal for 6 h at room temperature. Furthermore, the samples turn from a viscous state into an elastic state at 37 °C. Therefore, this polymer has shape memory effects triggered by body temperature. This unique material will have a wide range of applications in many fields, containing wearable electronics, biomedical devices, and 4D printing.
Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Materiais Inteligentes/química , Dimetilpolisiloxanos/química , Ligação de Hidrogênio , Análise Espectral , TemperaturaRESUMO
This paper investigates the signal to interference plus noise ratio (SINR) performance of the imaging laser radar (ILR) system operating at a wavelength of 905 nm using an avalanche photodiode array under the fog condition. We analysis the glow image of the light source, which is formed by the laser spot irradiated on a standard Lambertian target. Based on the proposed theoretical model, we determine the interference due to the glow inter-channel crosstalk under different fog conditions for a targeted channel. We show that, for transmission spans less than several tens of meters the interference due to glow crosstalk is higher than the fog (light to medium) induced losses. However, for a link range longer than 21 m the glow crosstalk induced interference is lower than the heavy fog induced attenuation. The proposed system performance is evaluated by developing an experimental test bed and using a dedicated indoor atmospheric chamber under homogeneously controlled fog conditions. We show that, under different fog conditions experimental results for changing SINR levels match well with the predicted data. The results shown can be used for design optimization of the ILR system when operated under fog conditions.
RESUMO
Coordination bonds are effective for constructing highly efficient self-healing materials as their strength is highly tunable. To design self-healing polymers with better performance, it is important to get a profound understanding of the structure-property relationships. However, this is challenging for self-healing polymers based on coordination bonds, because many parameters, such as bond energy, bond dynamics, and coordination number will have an essential effect on the mechanical and self-healing properties of the polymer. In this work, we synthesized two poly(dimethylsiloxane) (PDMS) polymers cross-linked by different Zn(II)-diiminopyridine coordination complexes (denoted as PDMS-NNN-Zn, PDMS-MeNNN-Zn respectively). The two cross-linking Zn(II)-diiminopyridine complexes are similar in coordination modes, but differ in coordination dynamics. As manifested by ITC, rheology, and tensile experiments, we confirm that the coordination bond in PDMS-MeNNN-Zn polymer films is weaker but more dynamic. Consequently, the PDMS-MeNNN-Zn polymer has poorer mechanical strength but higher stretchability and better self-healing properties. The inflicted cracks on PDMS-MeNNN-Zn polymer films can be completely healed after healing at room temperature for only 30 min with healing efficiencies higher than 90%. Such fast self-healing properties have never been achieved in self-healing polymers based on coordination bonds. Our results also demonstrate the important impact of the thermodynamic stability and kinetic lability of coordination complexes on the mechanical and self-healing properties of polymers. Such a comprehensive understanding is helpful for further design of novel synthetic polymers, which can achieve an optimal balance between the mechanical strength and self-healing performance.
RESUMO
For a laser radar (LADAR) system using a Geiger-mode avalanche photodiode (GmAPD), attenuating echo and background noise simultaneously affect the original data output from the GmAPD and eventually affect detection performance. In this study, we established a model that applies to the GmAPD-based LADAR with optical attenuation and also applies to any typical single photon detector that has a dead time (e.g., the photomultiplier tube); thus, a comprehensive and fundamental study is performed for the mathematical expectation of the number of signal detections (ES), the mathematical expectation of the number of noise detections (EN), the signal-to-noise ratio (SNR), and the range bias (absolute error, Rb) and precision (standard deviation, Rp) under various attenuation levels with different dead times and signal noise conditions. We observed the following: on the one hand, there exists an optimum attenuation level at which ES and SNR are maximized; on the other hand, there exists another optimum attenuation level for shorter dead times, at which Rp is minimized. The phenomenon of the maximum ES, SNR, or minimum Rp disappears gradually as the echo or noise decreases from high levels (e.g., 10 photoelectrons/echo or an equivalent background noise of 10 photoelectrons/range gate). Further, higher attenuation, which shows advantages under strong echo or noise conditions, yields a larger improvement in ES for longer dead times; and, with the reduction of the dead time or the noise, the maximum ES gradually increases, and the corresponding optimum attenuation level becomes slighter. Additionally, we found that, as the optical attenuation increases, EN decreases to 0, Rb changes from a negative value to 0, and Rp is minimized, becomes slightly worse, and reaches a constant. Moreover, the shorter dead times, which show advantages when they are shorter than the end time of the echo, lead to a larger ES, better Rb, and slightly worse Rp than the longer ones.
RESUMO
The waveform fitting technique has been a prevailing method for accurate extraction of a range of objects from an observed signal. Exploration of range precision then became a significant research topic to evaluate the performance of the technique with the corruption of noise. In this paper, we derive an analytical solution of the maximum likelihood estimation for the Gaussian model as the probability density function (PDF) of the range estimator. The variance of the linear version of the PDF is consistent with the Cramer-Rao bound (CRB). Thus, the variance of the PDF is regarded as the theoretical range precision (TRP) compared with the CRB. The verification results show the TRP can perfectly describe the variance of the simulation data while the CRB provides a lower bound. At a higher signal-to-noise ratio (SNR), both the TRP and CRB have the ability to provide an accurate description of the range precision. At a lower SNR, the TRP still performs well while the CRB is too loose to bound the variance on the unbiased estimation.
RESUMO
Dead-time has a significant influence on the detection efficiency and range performance of a photon-counting laser radar system with a Geiger-mode avalanche photodiode. In this paper, a rapid universal recursive model of the detection probability of discrete time under various dead-times is proposed, which is verified with controlled parameters. Our model has the advantage of fast computing speed and unifies multi-trigger, single-trigger, and zero-dead-time models. The computing speed is 1 to 2 orders of magnitude faster than Gatt's and Zhao's models under a short dead-time condition, with relative errors less than 0.001 and 10-14, respectively. Subsequently, the detection efficiency and range bias and precision with various dead-times are theoretically calculated and Monte Carlo simulated with different parameters. On the one hand, dead-time shorter than the end time of the target achieves better detection efficiency; however, this results in worse range performance. On the other hand, dead-time longer than the end time of the target maintains the detection efficiency at a low level but provides a better range performance. We discover that noise is the key reason for the periodic fluctuation of the detection efficiency and range performance versus different dead-times and the local optimum values of fluctuations occur when the dead-time is a few nanoseconds shorter or longer than 1, 1/2, 1/3, or even 1/4 of the end time of the target; further, this phenomenon becomes more evident when noise increases. Moreover, weaker noise level is crucial to the detection efficiency, and narrow pulse width and nearer target position in the range gate are important factors to improve precision.
RESUMO
Combining stretchability and self-healing properties in a man-made material is a challenging task. For an efficient self-healing material, weaker dynamic or reversible bonds should be presented as crosslinks so that they will first break upon damage and then reform after healing, which is not favorable when developing elastic materials. In this work, by incorporating dynamic Fe(III)-triazole coordination bonds into polydimethylsiloxane (PDMS) backbone, a highly elastic polymer is obtained that can be thermally healed at mild temperature. The as-prepared polymer can be stretched to 3400% strain at low loading speed (1 mm min(-1) ). When damaged, the polymer can be thermally healed at 60 °C for 20 h with a healing efficiency of over 90%. The good mechanical and healable properties of this polymer can be ascribed to the unique coordination bond strength and coordination conformation of Fe(III)-triazole coordination complex.
Assuntos
Dimetilpolisiloxanos/química , Temperatura , Compostos Férricos/química , Estrutura MolecularRESUMO
A new self-healing polymer has been obtained by incorporating a cyclometalated platinum(II) complex Pt(C⧠N⧠N)Cl (C⧠N⧠N = 6-phenyl-2,2'-bipyridyl) into a polydimethylsiloxane (PDMS) backbone. The molecular interactions (a combination of Pt···Pt and π-π interactions) between cyclometalated platinum(II) complexes are strong enough to crosslink the linear PDMS polymer chains into an elastic film. The as prepared polymer can be stretched to over 20 times of its original length. When damaged, the polymer can be healed at room temperature without any healants or external stimuli. Moreover, the self-healing is insensitive to surface aging. This work represents the first example where the attractive metallophilic inter-actions are utilized to design self-healing materials. Moreover, our results suggest that the stretchability and self-healing properties can be obtained simultaneously without any conflict by optimizing the strength of crosslinking interactions.
Assuntos
Compostos Organoplatínicos/química , Polímeros/química , Microscopia de Força Atômica , Polímeros/síntese químicaRESUMO
Human space activities have been continuously increasing. Astronauts experiencing spaceflight are faced with health problems caused by special space environments such as microgravity, and the investigation of cell injury is fundamental. The development of a platform capable of cell culture and injury detection is the prerequisite for the investigation. Constructing a platform suitable for special conditions in space life science research is the key issue. The ground-based investigation is an indispensable part of the research. Accordingly, a simulated microgravity (SMG)-oriented integrated chip platform capable of 3D cell culture and in situ visual detection of superoxide anion radical (O2â¢-) is developed. SMG can cause oxidative stress in human cells, and O2â¢- is one of the signaling molecules. Thus, a O2â¢--responsive aggregation-induced emission (AIE) probe is designed, which shows high selectivity and sensitivity to O2â¢-. Moreover, the probe exhibits abilities of long-term and wash-free staining to cells due to the AIE behavior, which is precious for space cell imaging. Meanwhile, a chip with a high-aspect-ratio chamber for adequate medium storage for the lack of the perfusion system during the SMG experiment and a cell culture chamber which can integrate the extracellular matrix (ECM) hydrogel for the bioinspired 3D cell culture is fabricated. In addition, a porous membrane is introduced between the chambers to prevent the hydrogel from separating during the SMG experiment. The afforded AIE probe-ECM hydrogel-integrated chip can achieve 3D culturing of U87-MG cells and in situ fluorescent detection of endogenous O2â¢- in the cells after long-term staining under SMG. The chip provides a powerful and potential platform for ground-based investigation in space life science and biomedical research.
Assuntos
Técnicas Biossensoriais , Hidrogéis , Superóxidos , Humanos , Superóxidos/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Hidrogéis/química , Matriz Extracelular/química , Técnicas de Cultura de Células/instrumentação , Simulação de Ausência de Peso , Desenho de Equipamento , Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Ausência de Peso , Estresse OxidativoRESUMO
As a new generation of display technology, micro-light-emitting diodes (micro-LEDs) have been widely recognized owing to their excellent performance in brightness, contrast ratio, resolution, etc. This work proposes a continuous wave (CW) laser writing strategy to achieve perovskite quantum dots (PQDs) array with small pixel size and pitch, overcoming the processing difficulties and limitations of mass transfer. Since PQDs have highly dynamic surface ligand states and low ionic bond energy, suitable laser power can quench PQDs and form an array area. The use of low-power CW lasers in the laser direct writing process, on the one hand, greatly maintains the luminescence performance and edge flatness of each PQD array, and the pixel pitch (1.5 µm-9 µm)/size can be adjusted arbitrarily, which meets the high-resolution micro-display requirements. On the other hand, we found that after the low-power laser quenches the PQDs, its residual oxide can absorb photons, thus reducing the backlight leakage in color conversion micro-LEDs. Finally, red/green/blue three-color conversion micro-LED and laser projection displays were realized; these results provide a feasible strategy for next-generation micro-LED displays.