Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Langmuir ; 39(2): 717-727, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36584671

RESUMO

We fabricated a mussel-inspired hemocompatible polycarbonate membrane (PC) modified by the cross-linking of chondroitin sulfate and caffeic acid polymer using CA-CS via a Schiff base and Michael addition reaction and named it CA-CS-PC. The as-fabricated CA-CS-PC membrane shows excellent hydrophilicity with a water contact angle of 0° and a negative surface charge with a zeta potential of -32 mV. The antiadhesion property of the CA-CS-modified PC membrane was investigated by enzyme-linked immunosorbent assay (ELISA), using human plasma protein fibrinogen adsorption studies, and proved to have excellent antiadhesion properties, because of the lower fibrinogen adsorption. In addition, the CA-CS-PC membrane also shows enhanced hemocompatibility. Finally, blood cell attachment tests of the CA-CS-PC membrane were observed by CLSM and SEM, and the obtained results proved that CA-CS-PC effectively resisted cell adhesion, such as platelets and leucocytes. Therefore, this work disclosed a new way to design a simple and versatile modification of the membrane surface by caffeic acid and chondroitin sulfate and apply it for cell adhesion.


Assuntos
Sulfatos de Condroitina , Fibrinogênio , Humanos , Adesão Celular , Fibrinogênio/metabolismo
2.
Biomacromolecules ; 24(2): 943-956, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36645325

RESUMO

A new potential route to enhance the efficiency of supramolecular polymers for cancer chemotherapy was successfully demonstrated by employing a photosensitive metallosupramolecular polymer (Hg-BU-PPG) containing an oligomeric poly(propylene glycol) backbone and highly sensitive pH-responsive uracil-mercury-uracil (U-Hg-U) bridges. This route holds great promise as a multifunctional bioactive nano-object for development of more efficient and safer cancer chemotherapy. Owing to the formation of uracil photodimers induced by ultraviolet irradiation, Hg-BU-PPG can form a photo-cross-linked structure and spontaneously forms spherical nanoparticles in aqueous solution. The irradiated nanoparticles possess many unique characteristics, such as unique fluorescence behavior, highly sensitive pH-responsiveness, and intriguing phase transition behavior in aqueous solution as well as high structural stability and antihemolytic activity in biological media. More importantly, a series of cellular studies clearly confirmed that the U-Hg-U photo-cross-links in the irradiated nanoparticles substantially enhance their selective cellular uptake by cancer cells via macropinocytosis and the mercury-loaded nanoparticles subsequently induce higher levels of cytotoxicity in cancer cells (compared to non-irradiated nanoparticles), without harming normal cells. These results are mainly attributed to cancer cell microenvironment-triggered release of mercury ions from disassembled nanoparticles, which rapidly induce massive levels of apoptosis in cancer cells. Overall, the pH-sensitive U-Hg-U photo-cross-links within this newly discovered supramolecular system are an indispensable factor that offers a potential path to remarkably enhance the selective therapeutic effects of functional nanoparticles toward cancer cells.


Assuntos
Mercúrio , Nanopartículas , Neoplasias , Polímeros/química , Portadores de Fármacos/química , Nanopartículas/química , Uracila/química , Concentração de Íons de Hidrogênio
3.
Biotechnol Bioeng ; 118(10): 4076-4091, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34251680

RESUMO

Enzymatic detachment of cells might damage important features and functions of cells and could affect subsequent cell-based applications. Therefore, nonenzymatic cell detachment using thermosensitive polymer matrix is necessary for maintaining cell quality after harvesting. In this study, we prepared thermosensitive PNIPAm-co-AAc-b-PS and PNIPAm-co-AAm-b-PS copolymers and low critical solution temperature (LCST) was tuned near to body temperature. Then, spin coated polymer films were prepared for cell adhesion and thermal-induced cell detachment. The alpha-step analysis and scanning electron microscope image of the films suggested that the thickness of the films depends on the molecular weight and concentration which ranged from 206 to 1330 nm for PNIPAm-co-AAc-b-PS and 97.5-497 nm for PNIPAm-co-AAm-b-PS. The contact angles of the films verified that the polymer surface was moderately hydrophilic at 37°C. Importantly, RAW264.7 cells were convincingly proliferated on the films to a confluent of >80% within 48 h and abled to detach by reducing the temperature. However, relatively more cells were grown on PNIPAm-co-AAm-b-PS (5%w/v) films and thermal-induced cell detachment was more abundant in this formulation. As a result, PNIPAm-co-AAm-b-PS (5%w/v) was further used to coat commercial cytodex 3 microcarriers for 3D cell culturing and interestingly enhanced cell detachment with preserved potential of recovery was observed at a temperature of below LCST. Thus, surface modification of microcarriers with thermosensitive PNIPAm-co-AAm-b-PS could be vital strategy for nonenzymatic cell detachment and to achieve adequate number of cells with maximum cell viability and functionality.


Assuntos
Resinas Acrílicas/química , Técnicas de Cultura de Células , Separação Celular , Dextranos/química , Animais , Camundongos , Células RAW 264.7
4.
Biotechnol Bioeng ; 118(3): 1213-1223, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33289076

RESUMO

In this study, we prepared ferulic acid (FA) and paclitaxel (PTX) co-loaded polyamidoamine (PAMAM) dendrimers conjugated with arginyl-glycyl-aspartic acid (RGD) to overcome P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). FA was released in greater extent (80%) from the outer layer of the dendrimers compared with PTX (70%) from the interior of the dendrimers. FA improved intracellular availability of PTX via P-gp modulation in drug-resistant cells. In vitro drug uptake data show higher PTX delivery with RGD-PAMAM-FP than with PAMAM-FP in drug resistant KB CH-R 8-5 cell lines. This indicates that RGD facilitates intracellular PTX accumulation through active targeting in multidrug-resistant KB CH-R 8-5 cells. The terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick-end labeling assay data and membrane potential analysis in mitochondria confirm the enhanced anticancer potential of RGD-PAMAM-FP nanoaggregates in drug-resistant cells. We also confirmed by the increased protein levels of proapoptotic factors such as caspase 3, caspase 9, p53, and Bax after treatment with RGD-PAMAM-FP nanoaggregates and also downregulates antiapoptotic factors. Hence, FA-PTX co-loaded, RGD-functionalized PAMAM G4.5 dendrimers may be considered as an effective therapeutic strategy to induce apoptosis in P-gp-overexpressing, multidrug-resistant cells.


Assuntos
Ácidos Cumáricos , Dendrímeros , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias , Paclitaxel , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Paclitaxel/química , Paclitaxel/farmacologia
5.
Biomacromolecules ; 22(10): 4446-4457, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506111

RESUMO

This study provides a significant contribution to the development of multiple hydrogen-bonded supramolecular nanocarrier systems by demonstrating that controlling the hydrogen bond strength within supramolecular polymers represents a crucial factor to tailor the drug delivery performance and enhance the effectiveness of cancer therapy. Herein, we successfully developed two kinds of poly(ethylene glycol)-based telechelic polymers Cy-PEG and UrCy-PEG having self-constituted double and quadruple hydrogen-bonding cytosine (Cy) and ureido-cytosine (UrCy) end-capped groups, respectively, which directly assemble into spherical nanogels with a number of interesting physical characteristics in aqueous solutions. The UrCy-PEG nanogels containing quadruple hydrogen-bonded UrCy dimers exhibited excellent long-term structural stability in a serum-containing biological medium, whereas the double hydrogen-bonded Cy moieties could not maintain the structural integrity of the Cy-PEG nanogels. More importantly, after the drug encapsulation process, a series of in vitro experiments clearly confirmed that drug-loaded UrCy-PEG nanogels induced selective apoptotic cell death in cancer cells without causing significant cytotoxicity to healthy cells, while drug-loaded Cy-PEG nanogels exerted nonselective cytotoxicity toward both cancer and normal cells, indicating that increasing the strength of hydrogen bonds in nanogels plays a key role in enhancing the selective cellular uptake and cytotoxicity of drugs and the subsequent induction of apoptosis in cancer cells.


Assuntos
Hidrogênio , Neoplasias , Portadores de Fármacos/uso terapêutico , Humanos , Hidrogênio/uso terapêutico , Ligação de Hidrogênio , Micelas , Nanogéis , Neoplasias/tratamento farmacológico , Polietilenoglicóis/uso terapêutico
6.
Mikrochim Acta ; 188(8): 271, 2021 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-34302235

RESUMO

Bentazone (BEZ) is one of the utmost selective problematic contact-past herbicide with high toxicity for humans owing to feasible contamination of surface and ground water. In this work, an electrochemical sensor has been developed for the sensitive detection of BEZ, based on hierarchically porous three-dimensional (3D) carbon superstructures (CS)-modified electrodes. The CSs (namely, CSHEX, CSPY, CSACN, and CSNOS) were prepared by the pyrolysis process from organic porous polyacrylonitrile (PAN) superstructure particles (namely, PANHEX, PANPY, PANACN, and PANNOS) obtained by free radical polymerization method using different solvents (hexane, pyridine, acetonitrile, and also no solvent). The assembly with the working electrode of CSs causes the electrocatalytic BEZ oxidation by rapid electron transfer compared to the PAN superstructures and bare electrodes. Intriguingly, compared to all electrodes, CSHEX-modified electrode showed the superior electrochemical detection of BEZ at a working potential of 0.99 V (vs. Ag/AgCl), very low detection limit (0.002 µM), wide dynamic linear range (0.03 to 200 µM), high sensitivity (9.95 µA µM-1 cm-2), and excellent reliability. The advanced sensors displayed an intensification of oxidation peak current of BEZ with high selectivity, remarkable sensitivity, and reproducibility for BEZ detection and received satisfactory outcomes designating the application of sensors for the determination of BEZ in river water samples.

7.
Mikrochim Acta ; 188(2): 35, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420619

RESUMO

Two-dimensional (2D) MoS2core-shell nanoparticles were synthesized using an eco-friendly surface functionalization-agent with L-glutathione and cystamine (L-GSH-MoS2-CYS) using ultrasonic frequency of 20-25 kHz. The novel modified electrode was evaluated for the electrochemical detection of doxorubicin (DOX), through cyclic and differential pulse voltammetric techniques. The electro-catalytic oxidation currents of DOX exhibited a linear relationship in the concentration ranges 0.1-78.3 and 98.3-1218 µM, with a detection limit of 31 nM. A sensitivity of 0.017µA µM-1 cm-2 was acquired at 0.48 V. The fabricated L-GSH-MoS2-CYS modified electrode showed excellent precision, selectivity, repeatability, and reproducibility during the determination of DOX levels in blood serum samples. Thus, the fabricated L-GSH-MoS2-CYS/GCE modified electrode has potential for clinical applications for optimization of chemotherapeutic drugs owing to its selectivity, ease of preparation, and long-term stability. Graphical abstract.


Assuntos
Cistamina/química , Dissulfetos/química , Doxorrubicina/sangue , Glutationa/química , Nanopartículas Metálicas/química , Molibdênio/química , Carbono/química , Doxorrubicina/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Limite de Detecção , Oxirredução , Reprodutibilidade dos Testes
8.
Biomacromolecules ; 21(9): 3857-3866, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786524

RESUMO

Physically cross-linked supramolecular polymers composed of a hydrophobic poly(epichlorohydrin) backbone with hydrogen-bonding cytosine pendant groups and hydrophilic poly(ethylene glycol) (PEG) side chains spontaneously self-assemble to form highly controlled, reversible supramolecular polymer networks (SPNs) because of cytosine-induced transient cross-linking. Owing to their simple synthesis procedure and ease of tuning the cytosine and PEG contents to obtain varying degrees of SPNs within the polymer matrix, the resulting polymers exhibit a unique surface morphology, wide-range tunable mechanical/rheological properties, and surface wettability behavior as well as high biocompatibility and structural stability in normal cell- and red blood cell-rich media. Cell culture experiments and fluorescent images clearly demonstrated that the incorporation of cytosine and PEG units into the SPN-based polymer substrates efficiently promoted cellular attachment and accelerated cell growth. Importantly, scratch wound-healing assays revealed that the cytosine-functionalized substrates promoted rapid cell spreading and migration into the damaged cellular surface and accelerated the wound-healing rate. These results indicate that the presence of cytosine units within polymer substrates is crucial for the construction of multifunctional tissue engineering scaffolds with tailorable physical characteristics in order to promote cell adhesion, proliferation, and differentiation.


Assuntos
Citosina , Polietilenoglicóis , Adesão Celular , Polímeros , Cicatrização
9.
Biomacromolecules ; 21(12): 5282-5291, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33155800

RESUMO

Water-soluble conjugated polymers (WCPs) composed of a hydrophobic polythiophene main chain with hydrophilic tertiary amine side-chains can directly self-assemble into sphere-like nano-objects in an aqueous solution due to phase separation between the hydrophilic and hydrophobic segments of the polymeric structure. Due to the presence of gas-responsive tertiary amine moieties in the spherical structure, the resulting polymers rapidly and reversibly tune their structural features, surface charge, and fluorescence performance in response to alternating carbon dioxide (CO2) and nitrogen (N2) bubbling, which leads to significantly enhanced fluorescence and surface charge switching properties and a stable cycle of on and off switching response. In vitro studies confirmed that the CO2-treated polymers exhibited extremely low cytotoxicity and enhanced cellular uptake ability in normal and tumor cells, and thus possess significantly improved fluorescence stability, distribution, and endocytic uptake efficiency within cellular organisms compared to the pristine polymer. More importantly, in vivo assays demonstrated that the CO2-treated polymers displayed excellent biocompatibility and high fluorescence enhancement in living zebrafish, whereas the fluorescence intensity and stability of zebrafish incubated with the pristine polymer decreased linearly over time. Thus, these CO2 and N2-responsive WCPs could potentially be applied as multifunctional fluorescent probes for in vivo biological imaging.


Assuntos
Dióxido de Carbono , Água , Animais , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Peixe-Zebra
10.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375720

RESUMO

Development of stimuli-responsive supramolecular micelles that enable high levels of well-controlled drug release in cancer cells remains a grand challenge. Here, we encapsulated the antitumor drug doxorubicin (DOX) and pro-photosensitizer 5-aminolevulinic acid (5-ALA) within adenine-functionalized supramolecular micelles (A-PPG), in order to achieve effective drug delivery combined with photo-chemotherapy. The resulting DOX/5-ALA-loaded micelles exhibited excellent light and pH-responsive behavior in aqueous solution and high drug-entrapment stability in serum-rich media. A short duration (1-2 min) of laser irradiation with visible light induced the dissociation of the DOX/5-ALA complexes within the micelles, which disrupted micellular stability and resulted in rapid, immediate release of the physically entrapped drug from the micelles. In addition, in vitro assays of cellular reactive oxygen species generation and cellular internalization confirmed the drug-loaded micelles exhibited significantly enhanced cellular uptake after visible light irradiation, and that the light-triggered disassembly of micellar structures rapidly increased the production of reactive oxygen species within the cells. Importantly, flow cytometric analysis demonstrated that laser irradiation of cancer cells incubated with DOX/5-ALA-loaded A-PPG micelles effectively induced apoptotic cell death via endocytosis. Thus, this newly developed supramolecular system may offer a potential route towards improving the efficacy of synergistic chemotherapeutic approaches for cancer.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Luz , Micelas , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos da radiação , Células HeLa , Humanos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Mol Sci ; 20(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216698

RESUMO

Carbon nanohorns (CNH) were synthesized by a simple conventional hydrothermal method in this study. The CNHs were prepared by the chemical oxidation from the carbonation of Nafion (catalyst) with heparin (carbon resource). The formation of CNH involved two major steps, as described followed. First, the formation of carbon nanorice (CNR) was achieved by carbonation and self-assembly of heparin inside the Nafion structure. Second, the further oxidation of CNR resulted the heterogeneous and porous micelle domains showed at the outer layer of the CNR particles. These porous domains exhibited hydrophobic carbon and resulted self-assembly of the CNR to form the structure of CNHs. The resulting CNHs aggregated into a "dahlia-like" morphology with fluorescence in a diameter of 50-200 nm. The "dahlia-like" CNH showed better fluorescence (450nm) than CNR particles because of the presence of more structural defect. These findings suggest that the hydrophilic fluorescent carbon nanohorns (HFCNHs) synthesized in this study have the potential to be used for in vitro bio-imaging.


Assuntos
Carbono/química , Dahlia/química , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/química , Imagem Molecular , Sondas Moleculares , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Biomacromolecules ; 19(7): 2772-2781, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29677448

RESUMO

Self-assembled pH-responsive polymeric micelles, a combination of hydrophilic poly(ethylene glycol) segments and hydrogen bonding interactions within a biocompatible polyurethane substrate, can spontaneously self-assemble into highly controlled, nanosized micelles in aqueous solution. These newly developed micelles exhibit excellent pH-responsive behavior and biocompatibility, highly controlled drug (doxorubicin; DOX) release behavior, and high drug encapsulation stability in different aqueous environments, making the micelles highly attractive potential candidates for safer, more effective drug delivery in applications such as cancer chemotherapy. In addition, in vitro cell studies revealed the drug-loaded micelles possessed excellent drug entrapment stability and low cytotoxicity toward macrophages under normal physiological conditions (pH 7.4, 37 °C). When the pH of the culture media was reduced to 6.0 to mimic the acidic tumor microenvironment, the drug-loaded micelles triggered rapid release of DOX within the cells, which induced potent antiproliferative and cytotoxic effects in vitro. Importantly, fluorescent imaging and flow cytometric analyses confirmed the DOX-loaded micelles were efficiently delivered into the cytoplasm of the cells via endocytosis and then subsequently gradually translocated into the nucleus. Therefore, these multifunctional micelles could serve as delivery vehicles for precise, effective, controlled drug release to prevent accumulation and activation of tumor-promoting tumor-associated macrophages in cancer tissues. Thus, this unique system may offer a potential route toward the practical realization of next-generation pH-responsive therapeutic delivery systems.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Micelas , Nanopartículas/química , Animais , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Endocitose , Concentração de Íons de Hidrogênio , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Nanopartículas/toxicidade , Polietilenoglicóis/química , Poliuretanos/química , Células RAW 264.7
14.
Environ Sci Technol ; 50(21): 11935-11942, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690128

RESUMO

A thermoresponsive chitosan derivative was synthesized by reacting chitosan (CS) with butyl glycidyl ether (BGE) to break the inter- and intramolecular hydrogen bonds of the polymer. An aqueous solution of the thermoresponsive CS derivative exhibits a lower critical solution temperature (LCST) than CS, and it undergoes a phase transition separation when the temperature changes. Successful incorporation of BGE into the CS was confirmed by FTIR and XPS analyses. Varying the BGE content and the concentration of the aqueous solution produced different LCST ranges, as shown by transmittance vs temperature curves. The particle size was observed by scanning electron microscopy, which revealed that the particles were smaller and well dispersed at 15 °C, whereas the particles became larger and tended to aggregate at 60 °C. A similar trend was observed with the mean particle size measured using dynamic light scattering. Positron annihilation lifetime spectroscopy data also revealed the reversibility of the particle properties as a function of temperature. Microstructure analysis showed that the particles had larger free-volume sizes at 15 °C than at 60 °C. The particles were also found to be nontoxic with 92% cell survival. A simple forward osmosis (FO) test for dye dehydration revealed the potential use of the thermoresponsive chitosan derivative as a draw solute with a flux of 8.6 L/m2 h and rejection of 99.8%.


Assuntos
Quitosana/análogos & derivados , Osmose , Quitosana/química , Tamanho da Partícula , Polímeros/química , Soluções
15.
Colloids Surf B Biointerfaces ; 241: 114028, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38905811

RESUMO

Biotin receptors are overexpressed in various cancer cell types, essential in tumor development, metabolism, and metastasis. Chemotherapeutic agents may be more effective and have fewer adverse effects if they specifically target the biotin receptors on cancer cells. Polymeric micelles (PMs) with nanoscale size via the EPR effect to accumulate near tumor tissue. We utilized the solvent exchange technique to crate polymeric Biotin-PEG-SeSe-PBLA micelles. This underwent self-assembly to create uniformly dispersed PMs with a hydrodynamic diameter of 81.54 ± 0.23 nm. The resulting PMs characterized by 1HNMR, 13CNMR, FTIR, and Raman spectroscopy. PMs exhibited a high efficacy of Doxorubicin encapsulation (EE) and loading content (DLC), with values of 5.93 wt% and 74.32 %, respectively. DOX@Biotin-PEG-SeSe-PBLA micelles showed optimal DOX release, around 89 % and 74 % in 10 mM glutathione and 0.1 % H2O2, respectively, within 72 hours, in the simulated cancer redox pool. Fascinatingly, the blank Biotin-PEG-SeSe-PBLA micelles did not affect the HaCaT or HeLa cell lines; approximately 85 % of the cells were metabolically active. Contrarily, at a 5 µg/ml concentration, DOX@Biotin-PEG-SeSe-PBLA specifically inhibited the proliferation of roughly 76 % of HeLa cells and 11 % of HaCaT cells. The fluorescence microscopy results demonstrated that biotin-decorated micelles were more successfully internalized by HeLa cells, which overexpress the biotin receptor, than by non-targeted micelles in vitro. In summary, the diselenide-linked Biotin-PEGSeSe-PBLA formed smart PMs that could offer DOX specific to cancer cells with precision and are physiologically durable.

16.
Polymers (Basel) ; 16(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38475376

RESUMO

Oil/water separation processes have garnered significant global attention due to the quick growth in industrial development, recurring chemical leakages, and oil spills. Hence, there is a significant demand for the development of inexpensive superwetting materials in an eco-friendly manner to separate oil/water mixtures and emulsions. In this study, a superwetting melamine sponge (SMS) with switchable wettabilities was prepared by modifying melamine sponge (MS) with sodium dodecanoate. The as-prepared SMS exhibited superhydrophobicity, superoleophilicity, underwater superoleophobicity, and underoil superhydrophobicity. The SMS can be utilized in treating both light and heavy oil/water mixtures through the prewetting process. It demonstrated fast permeation fluxes (reaching 108,600 L m-2 h-1 for a light oil/water mixture and 147,700 L m-2 h-1 for a heavy oil/water mixture) and exhibited good separation efficiency (exceeding 99.56%). The compressed SMS was employed in separating surfactant-stabilized water-in-oil emulsions (SWOEs), as well as surfactant-stabilized oil-in-water emulsions (SOWEs), giving high permeation fluxes (reaching 7210 and 5054 L m-2 h-1, respectively). The oil purity for SWOEs' filtrates surpassed 99.98 wt% and the separation efficiencies of SOWEs exceeded 98.84%. Owing to their remarkable capability for separating oil/water mixtures and emulsions, eco-friendly fabrication method, and feasibility for large-scale production, our SMS has a promising potential for practical applications.

17.
Biomater Adv ; 156: 213722, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101076

RESUMO

Noninvasive lung drug delivery is critical for treating respiratory diseases. Pluronic-based copolymers have been used as multifunctional materials for medical and biological applications. However, the Pluronic F127-based hydrogel is rapidly degraded, adversely affecting the mechanical stability for prolonged drug release. Therefore, this study designed two thermosensitive copolymers by modifying the Pluronic F127 terminal groups with carboxyl (ADF127) or amine groups (EDF127) to improve the viscosity and storage modulus of drug formulations. ß-alanine and ethylenediamine were conjugated at the terminal of Pluronic F127 using a two-step acetylation process, and the final copolymers were characterized using 1H nuclear magnetic resonance (1H NMR) and Fourier-transform infrared spectra. According to the 1H NMR spectra, Pluronic F127 was functionalized to form ADF127 and EDF127 with 85 % and 71 % functionalization degrees, respectively. Rheological studies revealed that the ADF127 (15 wt%) and EDF127 (15 wt%) viscosities increased from 1480 Pa.s (Pluronic F127) to 1700 Pa.s and 1800 Pa.s, respectively. Furthermore, the elastic modulus of ADF127 and EDF127 increased, compared with that of native Pluronic F127 with the addition of 5 % mucin, particularly for ADF127, thereby signifying the stronger adhesive nature of ADF127 and EDF127 with mucin. Additionally, ADF127 and EDF127 exhibited a decreased gelation temperature, decreasing from 33 °C (Pluronic F127 at 15 wt%) to 24 °C. Notably, the in vitro ADF127 and EDF127 drug release was prolonged (95 %; 48 h) by the hydrogel encapsulation of the liposome-Bdph combined with mucin, and the intermolecular hydrogen bonding between the mucin and the hydrogel increased the retention time and stiffness of the hydrogels. Furthermore, ADF127 and EDF127 incubated with NIH-3T3 cells exhibited biocompatibility within 2 mg/mL, compared with Pluronic F127. The nasal administration method was used to examine the biodistribution of the modified hydrogel carrying liposomes or exosomes with fluorescence using the IVIS system. Drug accumulation in the lungs decreased in the following order: ADF127 > EDF127 > liposomes or exosomes alone. These results indicated that the carboxyl group-modified Pluronic F127 enabled well-distributed drug accumulation in the lungs, which is beneficial for intranasal administration routes in treating diseases such as lung fibrosis.


Assuntos
Lipossomos , Poloxâmero , Camundongos , Animais , Poloxâmero/química , Hidrogéis , Mucinas , Distribuição Tecidual , Polímeros , Pulmão
18.
Langmuir ; 29(32): 10183-93, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23906111

RESUMO

Stable biofouling resistance is significant for general filtration requirements, especially for the improvement of membrane lifetime. A systematic group of hyper-brush PEGylated diblock copolymers containing poly(ethylene glycol) methacrylate (PEGMA) and polystyrene (PS) was synthesized using an atom transfer radical polymerization (ATRP) method and varying PEGMA lengths. This study demonstrates the antibiofouling membrane surfaces by self-assembled anchoring PEGylated diblock copolymers of PS-b-PEGMA on the microporous poly(vinylidene fluoride) (PVDF) membrane. Two types of copolymers are used to modify the PVDF surface, one with different PS/PEGMA molar ratios in a range from 0.3 to 2.7 but the same PS molecular weights (MWs, ∼5.7 kDa), the other with different copolymer MWs (∼11.4, 19.9, and 34.1 kDa) but the similar PS/PEGMA ratio (∼1.7 ± 0.2). It was found that the adsorption capacities of diblock copolymers on PVDF membranes decreased as molar mass ratios of PS/PEGMA ratio reduced or molecular weights of PS-b-PEGMA increased because of steric hindrance. The increase in styrene content in copolymer enhanced the stability of polymer anchoring on the membrane, and the increase in PEGMA content enhanced the protein resistance of membranes. The optimum PS/PEGMA ratio was found to be in the range between 1.5 and 2.0 with copolymer MWs above 20.0 kDa for the ultrastable resistance of protein adsorption on the PEGylated PVDF membranes. The PVDF membrane coated with such a diblock copolymer owned excellent biofouling resistance to proteins of BSA and lysozyme as well as bacterium of Escherichia coli and Staphylococcus epidermidis and high stable microfiltration operated with domestic wastewater solution in a membrane bioreactor.


Assuntos
Incrustação Biológica/prevenção & controle , Polietilenoglicóis/química , Polivinil/química , Polivinil/síntese química , Animais , Bovinos , Escherichia coli/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Muramidase/química , Muramidase/metabolismo , Soroalbumina Bovina/química , Staphylococcus epidermidis/química , Propriedades de Superfície
19.
Polymers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904555

RESUMO

PVDF membranes were prepared with nonsolvent-induced phase separation, using solvents with various dipole moments, including HMPA, NMP, DMAc and TEP. Both the fraction of the polar crystalline phase and the water permeability of the prepared membrane increased monotonously with an increasing solvent dipole moment. FTIR/ATR analyses were conducted at the surfaces of the cast films during membrane formation to provide information on if the solvents were present as the PVDF crystallized. The results reveal that, with HMPA, NMP or DMAc being used to dissolve PVDF, a solvent with a higher dipole moment resulted in a lower solvent removal rate from the cast film, because the viscosity of the casting solution was higher. The lower solvent removal rate allowed a higher solvent concentration on the surface of the cast film, leading to a more porous surface and longer solvent-governed crystallization. Because of its low polarity, TEP induced non-polar crystals and had a low affinity for water, accounting for the low water permeability and the low fraction of polar crystals with TEP as the solvent. The results provide insight into how the membrane structure on a molecular scale (related to the crystalline phase) and nanoscale (related to water permeability) was related to and influenced by solvent polarity and its removal rate during membrane formation.

20.
Int J Biol Macromol ; 232: 123423, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36716833

RESUMO

Hybrid eco-friendly nanocomposite films were fabricated by blending high-methoxyl pectin, gelatin, TiO2, and curcumin through the solution casting method. Various concentrations (0-5 wt%) of TiO2 nanoparticles (TNPs) and curcumin as an organic filler were added to the blend solutions. A high TNP concentration affected the surface morphology, roughness, and compactness of the films. Additionally, 3D mapping revealed the nanoparticle distribution in the film layers. Moisture content, water solubility, and light transmittance reduced dramatically with increasing TNP content, in accordance with the water vapor and oxygen permeabilities. X-ray diffraction revealed that the films were semicrystalline nanocomposites, and the thermal properties of the films increased when 5 wt% of TNPs was incorporated into the blend solution. Fourier-transform infrared and Raman analyses revealed interactions among biopolymers, nanoparticles, and organic fillers through hydrogen bonding. The shelf life of fresh salmon fillets was prolonged to six days for all groups, revealed by total viable counts and psychrotrophic bacteria counts, and the pH of the salmon fillets could be extended until the sixth day for all groups. Biodegradation assays demonstrated a significant weight loss in the nanocomposite films. Therefore, a nanocomposite film with 5 wt% TNPs could potentially be cytotoxic to NIH 3T3 cells.


Assuntos
Curcumina , Nanocompostos , Animais , Camundongos , Pectinas , Gelatina/química , Salmão , Embalagem de Alimentos , Nanocompostos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA