Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
J Am Soc Nephrol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687867

RESUMO

BACKGROUND: Acute kidney injury (AKI) is common in hospitalized patients and is associated with high mortality. Inflammation plays a key role in the pathophysiology of AKI. Long non-coding RNAs (lncRNAs) are increasingly recognized as regulators of the inflammatory and immune response, but its role in AKI remains unclear. METHODS: We explored the role of lncRNA Neat1 in (1) a cross-sectional and a longitudinal cohort of AKI in human; (2) three murine models of septic and aseptic AKI and (3) cultured C1.1 mouse kidney tubular cells. RESULTS: In human, hospitalized patients with AKI (n=66) demonstrated significantly increased lncRNA Neat1 levels in urinary sediment cells and buffy coat versus control participants (n=152) from a primary care clinic; and among 6 kidney transplant recipients, Neat1 levels were highest immediately after transplant surgery followed by a prompt decline to normal levels in parallel with recovery of kidney function. In mice with AKI induced by sepsis (via LPS injection or cecal ligation and puncture) and renal ischemia-reperfusion, kidney tubular Neat1 was increased versus sham-operated mice. Knockdown of Neat1 in the kidney using short hairpin RNA preserved kidney function, suppressed overexpression of the AKI biomarker NGAL, leukocyte infiltration and both intrarenal and systemic inflammatory cytokines IL-6, CCL-2 and IL-1ß. In LPS-treated C1.1 cells, Neat1 was overexpressed via TLR4/NF-κB signaling, and translocated from the cell nucleus into the cytoplasm where it promoted activation of NLRP3 inflammasomes via binding with the scaffold protein Rack1. Silencing Neat1 ameliorated LPS-induced cell inflammation, whereas its overexpression upregulated IL-6 and CCL-2 expression even without LPS stimulation. CONCLUSIONS: Our findings demonstrate a pathogenic role of Neat1 induction in human and mice during AKI with alleviation of kidney injury in 3 experimental models of septic and aseptic AKI after knockdown of Neat1. LPS/TLR4-induced Neat1 overexpression in tubular epithelial cells increases the inflammatory response by binding with the scaffold protein, Rack1, to activate NLRP3 inflammasomes.

2.
Clin Sci (Lond) ; 137(5): 317-331, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36705251

RESUMO

Kidney inflammation contributes to the progression of chronic kidney disease (CKD). Modulation of Toll-like receptor 4 (TLR4) signaling is a potential therapeutic strategy for this pathology, but the regulatory mechanisms of TLR4 signaling in kidney tubular inflammation remains unclear. Here, we demonstrated that tubule-specific deletion of TLR4 in mice conferred protection against obstruction-induced kidney injury, with reduction in inflammatory cytokine production, macrophage infiltration and kidney fibrosis. Transcriptome analysis revealed a marked down-regulation of long noncoding RNA (lncRNA) Meg3 in the obstructed kidney from tubule-specific TLR4 knockout mice compared with wild-type control. Meg3 was also induced by lipopolysaccharide in tubular epithelial cells via a p53-dependent signaling pathway. Silencing of Meg3 suppressed LPS-induced cytokine production of CCL-2 and CXCL-2 and the activation of p38 MAPK pathway in vitro and ameliorated kidney fibrosis in mice with obstructive nephropathy. Together, these findings identify a proinflammatory role of lncRNA Meg3 in CKD and suggest a novel regulatory pathway in TLR4-driven inflammatory responses in tubular epithelial cells.


Assuntos
RNA Longo não Codificante , Insuficiência Renal Crônica , Animais , Camundongos , Citocinas/metabolismo , Fibrose , Inflamação/patologia , Insuficiência Renal Crônica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
3.
Nephrol Dial Transplant ; 38(10): 2232-2247, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36914214

RESUMO

BACKGROUND: Thromboembolic events are prevalent in chronic kidney disease (CKD) patients due to increased thrombin generation leading to a hypercoagulable state. We previously demonstrated that inhibition of protease-activated receptor-1 (PAR-1) by vorapaxar reduces kidney fibrosis. METHODS: We used an animal model of unilateral ischemia-reperfusion injury-induced CKD to explore the tubulovascular crosstalk mechanisms of PAR-1 in acute kidney injury (AKI)-to-CKD transition. RESULTS: During the early phase of AKI, PAR-1-deficient mice exhibited reduced kidney inflammation, vascular injury, and preserved endothelial integrity and capillary permeability. During the transition phase to CKD, PAR-1 deficiency preserved kidney function and diminished tubulointerstitial fibrosis via downregulated transforming growth factor-ß/Smad signaling. Maladaptive repair in the microvasculature after AKI further exacerbated focal hypoxia with capillary rarefaction, which was rescued by stabilization of hypoxia-inducible factor and increased tubular vascular endothelial growth factor A in PAR-1-deficient mice. Chronic inflammation was also prevented with reduced kidney infiltration by both M1- and M2-polarized macrophages. In thrombin-induced human dermal microvascular endothelial cells (HDMECs), PAR-1 mediated vascular injury through activation of NF-κB and ERK MAPK pathways. Gene silencing of PAR-1 exerted microvascular protection via a tubulovascular crosstalk mechanism during hypoxia in HDMECs. Finally, pharmacologic blockade of PAR-1 with vorapaxar improved kidney morphology, promoted vascular regenerative capacity, and reduced inflammation and fibrosis depending on the time of initiation. CONCLUSIONS: Our findings elucidate a detrimental role of PAR-1 in vascular dysfunction and profibrotic responses upon tissue injury during AKI-to-CKD transition and provide an attractive therapeutic strategy for post-injury repair in AKI.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Lesões do Sistema Vascular , Animais , Humanos , Camundongos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/tratamento farmacológico , Células Endoteliais/metabolismo , Fibrose , Hipóxia , Inflamação/patologia , Rim , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Trombina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
4.
Clin Sci (Lond) ; 135(3): 429-446, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458750

RESUMO

Kallistatin is a multiple functional serine protease inhibitor that protects against vascular injury, organ damage and tumor progression. Kallistatin treatment reduces inflammation and fibrosis in the progression of chronic kidney disease (CKD), but the molecular mechanisms underlying this protective process and whether kallistatin plays an endogenous role are incompletely understood. In the present study, we observed that renal kallistatin levels were significantly lower in patients with CKD. It was also positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with serum creatinine level. Unilateral ureteral obstruction (UUO) in animals also led to down-regulation of kallistatin protein in the kidney, and depletion of endogenous kallistatin by antibody injection resulted in aggravated renal fibrosis, which was accompanied by enhanced Wnt/ß-catenin activation. Conversely, overexpression of kallistatin attenuated renal inflammation, interstitial fibroblast activation and tubular injury in UUO mice. The protective effect of kallistatin was due to the suppression of TGF-ß and ß-catenin signaling pathways and subsequent inhibition of epithelial-to-mesenchymal transition (EMT) in cultured tubular cells. In addition, kallistatin could inhibit TGF-ß-mediated fibroblast activation via modulation of Wnt4/ß-catenin signaling pathway. Therefore, endogenous kallistatin protects against renal fibrosis by modulating Wnt/ß-catenin-mediated EMT and fibroblast activation. Down-regulation of kallistatin in the progression of renal fibrosis underlies its potential as a valuable clinical biomarker and therapeutic target in CKD.


Assuntos
Insuficiência Renal Crônica/patologia , Serpinas/metabolismo , Obstrução Ureteral/patologia , Via de Sinalização Wnt , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Fibrose/patologia , Humanos , Rim/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta/metabolismo , beta Catenina/metabolismo
5.
Nephrol Dial Transplant ; 36(9): 1648-1656, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32617578

RESUMO

BACKGROUND: The potential long-term safety and efficacy of aliskiren in nondiabetic chronic kidney disease (CKD) are unknown. We sought to investigate the renoprotective effect of aliskiren on nondiabetic CKD patients. METHODS: In this open-label, parallel, randomized controlled trial, nondiabetic CKD Stages 3-4 patients were randomized to receive aliskiren added to an angiotensin II receptor blocker (ARB) at the maximal tolerated dose, or ARB alone. Primary outcome was the rate of change in estimated glomerular filtration rate (eGFR). Secondary endpoints included rate of change in urine protein-to-creatinine ratio (UPCR), cardiovascular events and hyperkalemia. Composite renal outcomes of doubling of baseline serum creatinine or a 40% reduction in eGFR or incident end-stage renal disease or death were analyzed as post hoc analysis. RESULTS: Seventy-six patients were randomized: 37 to aliskiren (mean age 55.1 ± 11.1 years) and 39 to control (mean age 55.0 ± 9.4 years). Their baseline demographics were comparable to eGFR (31.9 ± 9.0 versus 27.7 ± 9.0 mL/min/1.73 m2, P = 0.05) and UPCR (30.7 ± 12.6 versus 47.8 ± 2.8 mg/mmol, P = 0.33) for treatment versus control subjects. After 144 weeks of follow-up, there was no difference in the rate of eGFR change between groups. Six patients in the aliskiren group and seven in the control group reached the renal composite endpoint (16.2% versus 17.9%, P = 0.84). The cardiovascular event rate was 10.8% versus 2.6% (P = 0.217). The hyperkalemia rate was 18.9% versus 5.1% with an adjusted hazard ratio of 7.71 (95% confidence interval 1.14 to 52.3, P = 0.04) for the aliskiren arm. CONCLUSION: Aliskiren neither conferred additional renoprotective benefit nor increased adverse events, except for more hyperkalemia in nondiabetic CKD patients.


Assuntos
Insuficiência Renal Crônica , Renina , Adulto , Idoso , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Taxa de Filtração Glomerular , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
6.
Clin Sci (Lond) ; 134(21): 2873-2891, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33078834

RESUMO

Protease-activated receptor (PAR)-1 has emerged as a key profibrotic player in various organs including kidney. PAR-1 activation leads to deposition of extracellular matrix (ECM) proteins in the tubulointerstitium and induction of epithelial-mesenchymal transition (EMT) during renal fibrosis. We tested the anti-fibrotic potential of vorapaxar, a clinically approved PAR-1 antagonist for cardiovascular protection, in an experimental kidney fibrosis model of unilateral ureteral obstruction (UUO) and an AKI-to-chronic kidney disease (CKD) transition model of unilateral ischemia-reperfusion injury (UIRI), and dissected the underlying renoprotective mechanisms using rat tubular epithelial cells. PAR-1 is activated mostly in the renal tubules in both the UUO and UIRI models of renal fibrosis. Vorapaxar significantly reduced kidney injury and ameliorated morphologic changes in both models. Amelioration of kidney fibrosis was evident from down-regulation of fibronectin (Fn), collagen and α-smooth muscle actin (αSMA) in the injured kidney. Mechanistically, inhibition of PAR-1 inhibited MAPK ERK1/2 and transforming growth factor-ß (TGF-ß)-mediated Smad signaling, and suppressed oxidative stress, overexpression of pro-inflammatory cytokines and macrophage infiltration into the kidney. These beneficial effects were recapitulated in cultured tubular epithelial cells in which vorapaxar ameliorated thrombin- and hypoxia-induced TGF-ß expression and ECM accumulation. In addition, vorapaxar mitigated capillary loss and the expression of adhesion molecules on the vascular endothelium during AKI-to-CKD transition. The PAR-1 antagonist vorapaxar protects against kidney fibrosis during UUO and UIRI. Its efficacy in human CKD in addition to CV protection warrants further investigation.


Assuntos
Rim/lesões , Lactonas/farmacologia , Piridinas/farmacologia , Receptor PAR-1/antagonistas & inibidores , Animais , Biomarcadores/metabolismo , Hipóxia Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Inflamação/patologia , Rim/efeitos dos fármacos , Rim/patologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor PAR-1/metabolismo , Traumatismo por Reperfusão/complicações , Proteína Smad3/metabolismo , Trombina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos , Obstrução Ureteral/complicações , Obstrução Ureteral/patologia
7.
Kidney Int ; 93(6): 1367-1383, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29605095

RESUMO

Imbalance of Wnt/ß-catenin signaling in renal cells is associated with renal dysfunction, yet the precise mechanism is poorly understood. Previously we observed activated Wnt/ß-catenin signaling in renal tubules during proteinuric nephropathy with an unknown net effect. Therefore, to identify the definitive role of tubular Wnt/ß-catenin, we generated a novel transgenic "Tubcat" mouse conditionally expressing stabilized ß-catenin specifically in renal tubules following tamoxifen administration. Four weeks after tamoxifen injection, uninephrectomized Tubcat mice displayed proteinuria and elevated blood urea nitrogen levels compared to non-transgenic mice, implying a detrimental effect of the activated signaling. This was associated with infiltration of the tubulointerstitium predominantly by M1 macrophages and overexpression of the inflammatory chemocytokines CCL-2 and RANTES. Induction of overload proteinuria by intraperitoneal injection of low-endotoxin bovine serum albumin following uninephrectomy for four weeks aggravated proteinuria and increased blood urea nitrogen levels to a significantly greater extent in Tubcat mice. Renal dysfunction correlated with the degree of M1 macrophage infiltration in the tubulointerstitium and renal cortical up-regulation of CCL-2, IL-17A, IL-1ß, CXCL1, and ICAM-1. There was overexpression of cortical TLR-4 and NLRP-3 in Tubcat mice, independent of bovine serum albumin injection. Finally, there was no fibrosis, activation of epithelial-mesenchymal transition or non-canonical Wnt pathways observed in the kidneys of Tubcat mice. Thus, conditional activation of renal tubular Wnt/ß-catenin signaling in a novel transgenic mouse model demonstrates that this pathway enhances intrarenal inflammation via the TLR-4/NLRP-3 inflammasome axis in overload proteinuria.


Assuntos
Mediadores da Inflamação/metabolismo , Túbulos Renais/metabolismo , Macrófagos/metabolismo , Nefrite/metabolismo , Proteinúria/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nefrectomia , Nefrite/genética , Nefrite/patologia , Nefrite/fisiopatologia , Proteinúria/genética , Proteinúria/patologia , Proteinúria/fisiopatologia , Soroalbumina Bovina , Receptor 4 Toll-Like/metabolismo , Regulação para Cima , Via de Sinalização Wnt/genética , beta Catenina/genética
8.
Nephrol Dial Transplant ; 33(8): 1323-1332, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294056

RESUMO

Background: Complement C5 mediates pro-inflammatory responses in many immune-related renal diseases. Given that the C5a level is elevated in diabetes, we investigated whether activation of C5a/C5aR signalling plays a pathogenic role in diabetic nephropathy (DN) and the therapeutic potential of C5a inhibition for renal fibrosis. Methods: Human renal biopsies from patients with DN and control subjects were used for immunohistochemical staining of complement C5 components. Renal function and tubulointerstitial injury were compared between db/m mice, vehicle-treated mice and C5a inhibitor-treated db/db mice. A cell culture model of tubule epithelial cells (HK-2) was used to demonstrate the effect of C5a on the renal fibrotic pathway. Results: Increased levels of C5a, but not of its receptor C5aR, were detected in renal tubules from patients with DN. The intensity of C5a staining was positively correlated with the progression of the disease. In db/db mice, administration of a novel C5a inhibitor, NOX-D21, reduced the serum triglyceride level and attenuated the upregulation of diacylglycerolacyltransferase-1 and sterol-regulatory element binding protein-1 expression and lipid accumulation in diabetic kidney. NOX-D21-treated diabetic mice also had reduced serum blood urea nitrogen and creatinine levels with less glomerular and tubulointerstitial damage. Renal transforming growth factor beta 1 (TGF-ß1), fibronectin and collagen type I expressions were reduced by NOX-D21. In HK-2 cells, C5a stimulated TGF-ß production through the activation of the PI3K/Akt signalling pathway. Conclusions: Blockade of C5a signalling by NOX-D21 moderates altered lipid metabolism in diabetes and improved tubulointerstitial fibrosis by reduction of lipid accumulation and TGF-ß-driven fibrosis in diabetic kidney.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Complemento C5a/antagonistas & inibidores , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/complicações , Fibrose/prevenção & controle , Nefropatias/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Fibrose/etiologia , Fibrose/metabolismo , Humanos , Nefropatias/etiologia , Nefropatias/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Serina Endopeptidases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
9.
Nephrology (Carlton) ; 23(4): 297-307, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28075040

RESUMO

AIM: Angiotensin-converting enzyme inhibitors (ACEi) are widely used to deter the progression of chronic kidney disease (CKD). Besides controlling hypertension and reduction of intra-glomerular pressure, ACEi appear to have anti-fibrotic effects in the renal cortex. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), an endogenous tetrapeptide that is degraded by ACE, has also been shown to ameliorate the pro-fibrotic phenotype displayed in CKD in our recent study. Whether the anti-fibrotic properties of ACEi are mediated by Ac-SDKP has not been fully investigated. METHODS: To delineate the role of Ac-SDKP in ACE blockade, 12-week-old male BALB/c mice underwent sham operation or unilateral ureteric obstruction (UUO). UUO mice were subjected to: (i) vehicle; (ii) captopril or (iii) captopril in conjunction with S17092, a prolyl oligopeptidase inhibitor. After 7 days, mice were sacrificed and kidneys harvested for analyses. RESULTS: After UUO, there were heightened expressions of collagen I, collagen III, fibronectin and α-SMA associated with significant levels of tubulointerstitial injury on histological examination. Furthermore, p44/42 mitogen-activated protein kinase (MAPK) and transforming growth factor beta 1(TGF-ß1) signalling were upregulated. These were significantly ameliorated by captopril treatment alone but unaffected by co-administration of captopril with S17092. Captopril treatment had resulted in elevated urinary Ac-SDKP levels, an effect that was eliminated by the co-administration with S17092. CONCLUSION: This study allowed the investigation of the renoprotective property of ACEi in the absence of Ac-SDKP and proved conclusively that Ac-SDKP is the prime anti-fibrotic mediator of captopril, acting via p44/42 MAPK and TGF-ß1 signalling pathways. Future research to expand CKD armamentarium should explore the utility of augmenting Ac-SDKP levels.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Captopril/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Oligopeptídeos/metabolismo , Obstrução Ureteral/tratamento farmacológico , Animais , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Indóis/farmacologia , Rim/metabolismo , Rim/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos Endogâmicos BALB C , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Peptidil Dipeptidase A/metabolismo , Prolil Oligopeptidases , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase , Transdução de Sinais/efeitos dos fármacos , Tiazolidinas/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
10.
Kidney Int ; 89(2): 386-98, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26536000

RESUMO

Kallistatin is a serine protease inhibitor with anti-inflammatory, anti-angiogenic, and anti-oxidative properties. Since oxidative stress plays a critical role in the pathogenesis of diabetic nephropathy, we studied the effect and mechanisms of action of kallistatin superinduction. Using ultrasound-microbubble-mediated gene transfer, kallistatin overexpression was induced in kidney tubules. In db/db mice, kallistatin overexpression reduced serum creatinine and BUN levels, ameliorated glomerulosclerosis and tubulointerstitial injury, and attenuated renal fibrosis by inhibiting TGF-ß signaling. Additionally, downstream PAI-1 and collagens I and IV expression were reduced and kallistatin partially suppressed renal inflammation by inhibiting NF-κB signaling and decreasing tissue kallikrein activity. Kallistatin lowered blood pressure and attenuated oxidative stress as evidenced by suppressed levels of NADPH oxidase 4, and oxidative markers (nitrotyrosine, 8-hydroxydeoxyguanosine, and malondialdehyde) in diabetic renal tissue. Kallistatin also inhibited RAGE expression in the diabetic kidney and AGE-stimulated cultured proximal tubular cells. Reduced AGE-induced reactive oxygen species generation reflected an anti-oxidative mechanism via the AGE-RAGE-reactive oxygen species axis. These results indicate a renoprotective role of kallistatin against diabetic nephropathy by multiple mechanisms including suppression of oxidative stress, anti-fibrotic and anti-inflammatory actions, and blood pressure lowering.


Assuntos
Nefropatias Diabéticas/prevenção & controle , Terapia Genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Serpinas/fisiologia , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fibrose , Técnicas de Transferência de Genes , Calicreínas/metabolismo , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Neovascularização Patológica , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Nephrol Dial Transplant ; 31(5): 772-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26311214

RESUMO

BACKGROUND: The prevalence and severity of sleep apnea (SA) in the chronic kidney disease (CKD) population is not well characterized. Recent studies have yielded highly variable prevalence rates due to cohort heterogeneity and interstudy inconsistencies in defining SA. This study sought to determine the association of SA with CKD by recruiting a uniform cohort to undertake overnight polysomnography (PSG). METHODS: A total of 141 male Chinese CKD patients, ages 40-60 years, underwent overnight PSG to delineate the prevalence and severity of SA and nocturnal hypoxemia (NH). Body mass index (BMI), neck girth, estimated glomerular filtration rate, urinary protein excretion and Epworth sleepiness scale (ESS) score were collected at baseline to determine associative factors. RESULTS: The prevalence rates of SA and NH were 35.5 and 10.6%, respectively, in this study population [mean (±SD) age 51.44 ± 6.05 years; BMI 26.05 ± 4.22 kg/m(2)]. The adjusted odds ratios (ORs) for SA by BMI and proteinuria were 1.18 [95% confidence interval (CI) 1.02, 1.37; P ≤ 0.05] and 1.57 (95% CI 1.12, 2.46; P ≤ 0.05), respectively. The adjusted ORs for the median cohort oxygen desaturation index (ODI) by BMI and proteinuria were 1.23 (95% CI 1.05, 1.45; P ≤ 0.05) and 1.75 (95% CI 1.12, 2.76; P ≤ 0.05). However, no significant correlation between the prevalence and severity of SA and NH with progressive renal deterioration was observed. Furthermore, no significant mean difference in the apnea-hypopnea index and ODI was observed for an ESS above and below 10. CONCLUSIONS: SA is prevalent in CKD patients and strongly correlated with BMI and proteinuria, but not with renal function. The ESS is an investigative tool that lacks discriminatory power in patients with renal insufficiency. Therefore clinical vigilance for SA is paramount when attending to CKD patients with significant proteinuria.


Assuntos
Proteinúria/etiologia , Insuficiência Renal Crônica/complicações , Síndromes da Apneia do Sono/epidemiologia , Adulto , Feminino , Taxa de Filtração Glomerular , Hong Kong/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia , Prevalência , Síndromes da Apneia do Sono/etiologia , Síndromes da Apneia do Sono/patologia
12.
Apoptosis ; 20(7): 907-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808596

RESUMO

Glomerulo-podocytic communication plays an important role in the podocytic injury in IgA nephropathy (IgAN). In this study, we examine the role of podocytic angiotensin II receptor subtype 1 (AT1R) and prorenin receptor (PRR) in podocytic apoptosis in IgAN. Polymeric IgA (pIgA) was isolated from patients with IgAN and healthy controls. Conditioned media were prepared from growth arrested human mesangial cells (HMC) incubated with pIgA from patients with IgAN (IgA-HMC media) or healthy controls (Ctl-HMC media). A human podocyte cell line was used as a model to examine the regulation of the expression of AT1R, PRR, TNF-α and CTGF by IgA-HMC media. Podocytic nephrin expression, annexin V binding and caspase 3 activity were used as the functional readout of podocytic apoptosis. IgA-HMC media had no effect on AngII release by podocytes. IgA-HMC media significantly up-regulated the expression of AT1R and PRR, down-regulated nephrin expression and induced apoptosis in podocytes. Mono-blockade of AT1R, PRR, TNF-α or CTGF partially reduced podocytic apoptosis. IgA-HMC media activated NFκB, notch1 and HEY1 expression by podocytes and dual blockade of AT1R with PRR, or anti-TNF-α with anti-CTGF, effectively rescued the podocytic apoptosis induced by IgA-HMC media. Our data suggests that pIgA-activated HMC up-regulates the expression of AT1R and PRR expression by podocytes and the associated activation of NFκB and notch signalling pathways play an essential role in the podocytic apoptosis induced by glomerulo-podocytic communication in IgAN. Simultaneously targeting the AT1R and PRR could be a potential therapeutic option to reduce the podocytic injury in IgAN.


Assuntos
Apoptose , Células Mesangiais/citologia , Podócitos/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Superfície Celular/metabolismo , Povo Asiático , Feminino , Humanos , Imunoglobulina A/metabolismo , Masculino , Células Mesangiais/metabolismo , Receptores Notch/metabolismo , Sistema Renina-Angiotensina , Transdução de Sinais , Receptor de Pró-Renina
13.
Clin Sci (Lond) ; 128(4): 269-80, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25200314

RESUMO

Bone morphogenetic protein 7 (BMP7) has been reported to confer renoprotective effects in acute and chronic kidney disease models, but its potential role in Type 2 diabetic nephropathy remains unknown. In cultured human proximal tubular epithelial cells (PTECs), exposure to advanced glycation end-products (AGEs) induced overexpression of intercellular adhesion molecule 1 (ICAM1), monocyte chemoattractant protein 1 (MCP1), interleukin 8 (IL-8) and interleukin 6 (IL-6), involving activation of p44/42 and p38 mitogen-activated protein kinase (MAPK) signalling. BMP7 dose-dependently attenuated AGE-induced up-regulation of ICAM1, MCP1, IL-8 and IL-6 at both mRNA and protein levels. Moreover, BMP7 suppressed AGE-induced p38 and p44/42 MAPK phosphorylation and reactive oxygen species production in PTECs. Compared with vehicle control, uninephrectomized db/db mice treated with BMP7 for 8 weeks had significantly lower urinary albumin-to-creatinine ratio (3549±816.2 µg/mg compared with 8612±2037 µg/mg, P=0.036), blood urea nitrogen (33.26±1.09 mg/dl compared with 37.49±0.89 mg/dl, P=0.006), and renal cortical expression of ICAM1 and MCP1 at both gene and protein levels. In addition, BMP7-treated animals had significantly less severe tubular damage, interstitial inflammatory cell infiltration, renal cortical p38 and p44/42 phosphorylation and lipid peroxidation. Our results demonstrate that BMP7 attenuates tubular pro-inflammatory responses in diabetic kidney disease by suppressing oxidative stress and multiple inflammatory signalling pathways including p38 and p44/42 MAPK. Its potential application as a therapeutic molecule in diabetic nephropathy warrants further investigation.


Assuntos
Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/uso terapêutico , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Inflamação/patologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/fisiopatologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Testes de Função Renal , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/fisiopatologia , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
J Ren Nutr ; 25(2): 230-3, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25578352

RESUMO

Diabetic nephropathy (DN) is a major cause of uremia in developed societies. Inflammation is emerging as an important mechanism for its pathogenesis and progression. Herein, we review 4 recently described cellular receptors that have been shown to mediate diabetic interstitial kidney disease. Peroxisome proliferator-activated receptor-γ attenuates STAT-1 activation and has shown promise in renoprotection. Its clinical utility is limited mainly by fluid retention through upregulation of sodium-hydrogen exchanger-3 and aquaporin-1 channels in the proximal tubule. The bradykinin receptor 2 of the kallikrein-kinin system has been shown to mediate diabetic kidney injury and its blockade conferred renoprotective effects in animal models of DN. The related protease-activated receptor, especially receptor 4, has recently been shown to participate in DN. Further studies are required to confirm its role. Finally, the toll-like receptor, especially TLR4 and TLR2, has been verified in multiple models to be a significant sensor of and reactor to hyperglycemia and other diabetic substrates that orchestrate interstitial inflammation in DN.


Assuntos
Nefropatias Diabéticas/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Animais , Nefropatias Diabéticas/complicações , Humanos , Inflamação/complicações , Inflamação/fisiopatologia , Sistema Calicreína-Cinina/fisiologia , Receptores Ativados por Proliferador de Peroxissomo/fisiologia , Ratos , Receptores Ativados por Proteinase/fisiologia , Receptores Toll-Like/fisiologia
15.
J Am Soc Nephrol ; 25(1): 175-86, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24052631

RESUMO

Vitamin D seems to protect against cardiovascular disease, but the reported effects of vitamin D on patient outcomes in CKD are controversial. We conducted a prospective, double blind, randomized, placebo-controlled trial to determine whether oral activated vitamin D reduces left ventricular (LV) mass in patients with stages 3-5 CKD with LV hypertrophy. Subjects with echocardiographic criteria of LV hypertrophy were randomly assigned to receive either oral paricalcitol (1 µg) one time daily (n=30) or matching placebo (n=30) for 52 weeks. The primary end point was change in LV mass index over 52 weeks, which was measured by cardiac magnetic resonance imaging. Secondary end points included changes in LV volume, echocardiographic measures of systolic and diastolic function, biochemical parameters of mineral bone disease, and measures of renal function. Change in LV mass index did not differ significantly between groups (median [interquartile range], -2.59 [-6.13 to 0.32] g/m(2) with paricalcitol versus -4.85 [-9.89 to 1.10] g/m(2) with placebo). Changes in LV volume, ejection fraction, tissue Doppler-derived measures of early diastolic and systolic mitral annular velocities, and ratio of early mitral inflow velocity to early diastolic mitral annular velocity did not differ between the groups. However, paricalcitol treatment significantly reduced intact parathyroid hormone (P<0.001) and alkaline phosphatase (P=0.001) levels as well as the number of cardiovascular-related hospitalizations compared with placebo. In conclusion, 52 weeks of treatment with oral paricalcitol (1 µg one time daily) significantly improved secondary hyperparathyroidism but did not alter measures of LV structure and function in patients with severe CKD.


Assuntos
Ergocalciferóis/uso terapêutico , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/etiologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/etiologia , Idoso , Fosfatase Alcalina/sangue , Pressão Sanguínea/efeitos dos fármacos , Método Duplo-Cego , Ecocardiografia , Ergocalciferóis/efeitos adversos , Feminino , Humanos , Hipercalcemia/induzido quimicamente , Hipertrofia Ventricular Esquerda/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Hormônio Paratireóideo/sangue , Estudos Prospectivos , Insuficiência Renal Crônica/patologia , Disfunção Ventricular Esquerda/fisiopatologia
16.
Immunol Cell Biol ; 92(5): 427-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24418819

RESUMO

Protein overload activates proximal tubule epithelial cells (PTECs) to release chemokines. Bone morphogenetic protein-7 (BMP-7) reduces infiltrating cells and tissue damage in acute and chronic renal injuries. The present study examines the inhibitory effect and related molecular mechanism of BMP-7 on chemokine and adhesion molecule synthesis by PTECs activated with human serum albumin (HSA). The expression profiles of chemokines and adhesion molecules in cultured human PTECs were screened by PCR array. Expression of CXCL1, CXCL2 and vascular cell adhesion protein 1 (VCAM-1) by PTECs was significantly upregulated by HSA and reduced by BMP-7. HSA activated both the canonical and noncanonical nuclear factor (NF)-κB pathways in PTECs, as indicated by the increased nuclear translocation of NF-κB p50 and p52 subunits. The nuclear translocation of NF-κB p52 was completely abrogated by BMP-7, whereas NF-κB p50 activation was only partially repressed. BMP-7 increased the expression of cellular inhibitor of apoptosis 1 (cIAP1), tumor necrosis factor receptor-associated factor (TRAF)2 and TRAF3, but not of NF-κB-inducing kinase (NIK) that was significantly upregulated by HSA. Silencing NIK recapitulated the partial inhibitory effect on HSA-induced chemokine synthesis by BMP-7. Complete abolishment of the chemokine synthesis was only achieved by including additional blockade of the NF-κB p65 translocation on top of NIK silencing. Our data suggest that BMP-7 represses the NIK-dependent chemokine synthesis in PTECs activated with HSA through blocking the noncanonical NF-κB pathway and partially interfering with the canonical NF-κB pathway.


Assuntos
Proteína Morfogenética Óssea 7/metabolismo , Quimiocinas/biossíntese , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células Cultivadas , Quimiocinas/genética , Regulação da Expressão Gênica , Humanos , Espaço Intracelular , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Transporte Proteico , Transdução de Sinais , Quinase Induzida por NF-kappaB
17.
Inflamm Res ; 63(10): 831-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063374

RESUMO

OBJECTIVE: Kidney injury molecule-1 (KIM-1) serves as a useful marker for monitoring tubular injury, and sustained KIM-1 expression may be implicated in chronic kidney fibrosis. In this study, we examine the kinetics and mechanisms of KIM-1 release in human proximal tubular epithelial cells (PTEC) under the activation by major pathologic players in diabetic nephropathy, including human serum albumin (HSA), glycated albumin (AGE-BSA) and high glucose. MATERIALS AND METHODS: The kinetics of KIM-1 release by PTEC under activation with HSA, AGE-BSA and high glucose, were determined by RT-PCR and ELISA. The activation profiles of major signaling pathways in PTEC were identified by PCR array. Based on the array data, blockade experiments were designed to assess their regulatory roles in KIM-1 release. RESULTS: Prompt shedding of KIM-1 was observed in PTEC cultured for 4 h with HSA and AGE-BSA, but not with high glucose. Culturing PTEC for 3 days with AGE-BSA exhibited sustained up-regulation of KIM-1 release, but not with HSA. In all culture experiments, high glucose did not induce KIM-1 release in PTEC. HSA and AGE-BSA activated multiple signaling pathways in PTEC including NFκB, ERK1/2 and the oxidative stress pathways. Long-term culturing PTEC with AGE-BSA but not HSA activated the Jak-Stat pathway. While incubation of PTEC with diphenylene iodonium blocked the short-term release of KIM-1 mediated by HSA or AGE-BSA, Jak-Stat inhibitors diminished the long-term KIM-1 release by PTEC induced by AGE-BSA. CONCLUSION: KIM-1 release in PTEC was differentially up-regulated by HSA and AGE-BSA. The short-term KIM-1 shedding was mediated by the reactive oxygen species, whereas Jak-Stat pathway regulates the long-term KIM-1 release.


Assuntos
Células Epiteliais/efeitos dos fármacos , Glucose/farmacologia , Produtos Finais de Glicação Avançada/farmacologia , Glicoproteínas de Membrana/metabolismo , Receptores Virais/metabolismo , Soroalbumina Bovina/farmacologia , Albumina Sérica/farmacologia , Células Cultivadas , Células Epiteliais/metabolismo , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Janus Quinases/metabolismo , Túbulos Renais Proximais/citologia , Cinética , Metaloproteinase 3 da Matriz/metabolismo , Glicoproteínas de Membrana/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Virais/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
18.
Phytomedicine ; 130: 155457, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38810556

RESUMO

BACKGROUND: Diabetes leads to chronic kidney disease (CKD) and kidney failure, requiring dialysis or transplantation. Astragalus, a common herbal medicine and US pharmacopeia-registered food ingredient, is shown kidney protective by retrospective and preclinical data but with limited long-term prospective clinical evidence. This trial aimed to assess the effectiveness of astragalus on kidney function decline in macroalbuminuric diabetic CKD patients. METHODS: This randomized, assessor-blind, standard care-controlled, multi-center clinical trial randomly assigned 118 patients with estimated glomerular filtration rate (eGFR) of 30-90 ml/min/1.73m2 and urinary albumin-to-creatinine ratio (UACR) of 300-5000 mg/g from 7 public outpatient clinics and the community in Hong Kong between July 2018 and April 2022 to add-on oral astragalus granules (15 gs of raw herbs daily equivalent) or to continue standard care alone as control for 48 weeks. Primary outcomes were the slope of change of eGFR (used for sample size calculation) and UACR of the intention-to-treat population. Secondary outcomes included endpoint blood pressures, biochemistry, biomarkers, concomitant drug change and adverse events. (ClinicalTrials.gov: NCT03535935) RESULTS: During the 48-week period, the estimated difference in the slope of eGFR decline was 4.6 ml/min/1.73m2 per year (95 %CI: 1.5 to 7.6, p = 0.003) slower with astragalus. For UACR, the estimated inter-group proportional difference in the slope of change was insignificant (1.14, 95 %CI: 0.85 to 1.52, p = 0.392). 117 adverse events from 31 astragalus-treated patients and 41 standard care-controlled patients were documented. The 48-week endpoint systolic blood pressure was 7.9 mmHg lower (95 %CI: -12.9 to -2.8, p = 0.003) in the astragalus-treated patients. 113 (96 %) and 107 (91 %) patients had post-randomization and endpoint primary outcome measures, respectively. CONCLUSION: In patients with type 2 diabetes, stage 2 to 3 CKD and macroalbuminuria, add-on astragalus for 48 weeks further stabilized kidney function on top of standard care.


Assuntos
Astrágalo , Diabetes Mellitus Tipo 2 , Taxa de Filtração Glomerular , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Taxa de Filtração Glomerular/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Idoso , Diabetes Mellitus Tipo 2/tratamento farmacológico , Astrágalo/química , Nefropatias Diabéticas/tratamento farmacológico , Fitoterapia , Albuminúria/tratamento farmacológico , Creatinina/urina , Creatinina/sangue , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Hong Kong
19.
J Cell Physiol ; 228(5): 917-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23086807

RESUMO

Regardless of the original causes and etiology, the progression to renal function declines follows a final common pathway associated with tubulointerstitial injury, in which the proximal tubular epithelial cells (PTEC) are instrumental. Kidney injury molecule-1 (KIM-1) is an emerging biomarker, and its expression and release are induced in PTEC upon injury. KIM-1 plays the role as a double-edged sword and implicates in the process of kidney injury and healing. Expression of KIM-1 is also associated with tubulointerstitial inflammation and fibrosis. More importantly, KIM-1 expressing PTEC play the role as the residential phagocytes, contribute to the removal of apoptotic cells and facilitate the regeneration of injured tubules. The precise mechanism of KIM-1 and its sheded ectodomain on restoration of tubular integrity after injury is not fully understood. Other than PTEC, macrophages (Mø) also implicate in tubular repair. Understanding the crosstalk between Mø and the injured PTEC is essential for designing appropriate methods for controlling the sophisticated machinery in tubular regeneration and healing. This article will review the current findings of KIM-1, beginning with its basic structure, utility as a biomarker, and possible functions, with focus on the role of KIM-1 in regeneration and healing of injured PTEC.


Assuntos
Nefropatias , Túbulos Renais Proximais , Glicoproteínas de Membrana/metabolismo , Receptores Virais/metabolismo , Ferimentos e Lesões/metabolismo , Biomarcadores/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Inflamação/metabolismo , Inflamação/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Glicoproteínas de Membrana/química , Fagócitos/metabolismo , Receptores Virais/química , Regeneração , Cicatrização
20.
Kidney Int ; 83(5): 887-900, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423259

RESUMO

We recently showed that Toll-like receptor (TLR) TLR4 was overexpressed in the human diabetic kidney, which could promote tubular inflammation. Here we explored whether the TLR4 antagonist, CRX-526, has therapeutic potential to attenuate renal injuries and slow the progression of advanced diabetic nephropathy in wild-type and endothelial nitric oxide synthase (eNOS) knockout mice. In the latter, the endogenous TLR4 ligand, high-mobility group box 1, was upregulated more than in wild-type animals. Four weeks after streptozotocin induction of diabetes, mice were injected with either CRX-526 or vehicle for 8 weeks. CRX-526 significantly reduced albuminuria and blood urea nitrogen without altering blood glucose and systolic blood pressure in diabetic mice. Glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial injury were attenuated by CRX-526, which was associated with decreased chemokine (C-C motif) ligand (CCL)-2, osteopontin, CCL-5 overexpression, subsequent macrophage infiltration, and collagen deposition. These effects were associated with inhibition of TGF-ß overexpression and NF-κB activation. In vitro, CRX-526 inhibited high glucose-induced osteopontin upregulation and NF-κB nuclear translocation in cultured human proximal tubular epithelial cells. Thus, we provided evidence that inhibition of TLR4 with the synthetic antagonist CRX-526 conferred renoprotective effects in eNOS knockout diabetic mice with advanced diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Glucosamina/análogos & derivados , Rim/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Albuminúria/etiologia , Albuminúria/imunologia , Albuminúria/prevenção & controle , Animais , Glicemia/metabolismo , Nitrogênio da Ureia Sanguínea , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/patologia , Progressão da Doença , Glucosamina/farmacologia , Proteína HMGB1/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/deficiência , Óxido Nítrico Sintase Tipo III/genética , Osteopontina/metabolismo , Estreptozocina , Fatores de Tempo , Receptor 4 Toll-Like/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA