Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Infect Dis ; 219(4): 637-647, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30202982

RESUMO

Background: We previously isolated a Klebsiella pneumoniae strain, NTUH-K2044, from a community-acquired pyogenic liver abscess (PLA) patient. Analysis of the NTUH-K2044 genome revealed that this strain harbors 2 putative type VI secretion system (T6SS)-encoding gene clusters. Methods: The distribution of T6SS genes in the PLA and intestinal-colonizing K pneumoniae clinical isolates was examined. icmF1-, icmF2-, icmF1/icmF2-, and hcp-deficient K pneumoniae strains were constructed using an unmarked deletion method. The roles of T6SSs in antibacterial activity, type-1 fimbriae expression, cell adhesion, and invasion and intestinal colonization were determined. Results: The prevalence of T6SSs is higher in the PLA strains than in the intestinal-colonizing strains (37 of 42 vs 54 of 130). Deletion of icmF1/icmF2 and hcp genes significantly reduced interbacterial and intrabacterial killing. Strain deleted for icmF1 and icmF2 exhibited decreased transcriptional expression of type-1 fimbriae and reduced adherence to and invasion of human colorectal epithelial cells and was attenuated for in vivo competition to enable colonization of the host gut. Finally, Hcp expression in K pneumoniae was silenced by the histone-like nucleoid structuring protein via direct binding. Conclusions: These results provide new insights into T6SS-mediated bacterial competition and attachment in K pneumoniae and could facilitate the prevention of K pneumoniae infection.


Assuntos
Células Epiteliais/microbiologia , Intestinos/microbiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/metabolismo , Animais , Aderência Bacteriana , Modelos Animais de Doenças , Endocitose , Fímbrias Bacterianas/metabolismo , Deleção de Genes , Genes Bacterianos , Humanos , Klebsiella pneumoniae/genética , Camundongos Endogâmicos BALB C , Modelos Biológicos , Sistemas de Secreção Tipo VI/genética , Virulência , Fatores de Virulência/genética
2.
mBio ; 15(5): e0288923, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530033

RESUMO

Infections caused by Staphylococcus aureus are a leading cause of mortality worldwide. S. aureus infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are particularly difficult to treat due to their resistance to next-generation ß-lactams (NGBs) such as methicillin, nafcillin, and oxacillin. Resistance to NGBs, which is alternatively known as broad-spectrum ß-lactam resistance, is classically mediated by PBP2a, a penicillin-binding protein encoded by mecA (or mecC) in MRSA. Thus, presence of mec genes among S. aureus spp. serves as the predictor of resistance to NGBs and facilitates determination of the proper therapeutic strategy for a staphylococcal infection. Although far less appreciated, mecA-deficient S. aureus strains can also exhibit NGB resistance. These strains, which are collectively termed as methicillin-resistant lacking mec (MRLM), are currently being identified in increasing numbers among natural resistant isolates of S. aureus. The mechanism/s through which MRLMs produce resistance to NGBs remains unknown. In this study, we demonstrate that mutations that alter PBP4 and GdpP functions, which are often present among MRLMs, can synergistically mediate resistance to NGBs. Furthermore, our results unravel that this novel mechanism potentially enables MRLMs to produce resistance toward NGBs at levels comparable to those of MRSAs. Our study provides a fresh new perspective about alternative mechanisms of NGB resistance, challenging our current overall understanding of high-level, broad-spectrum ß-lactam resistance in S. aureus. It thus suggests reconsideration of the current approach toward diagnosis and treatment of ß-lactam-resistant S. aureus infections. IMPORTANCE: In Staphylococcus aureus, high-level, broad-spectrum resistance to ß-lactams such as methicillin, also referred to as methicillin resistance, is largely attributed to mecA. This study demonstrates that S. aureus strains that lack mecA but contain mutations that functionally alter PBP4 and GdpP can also mediate high-level, broad-spectrum resistance to ß-lactams. Resistance brought about by the synergistic action of functionally altered PBP4 and GdpP was phenotypically comparable to that displayed by mecA, as seen by increased bacterial survival in the presence of ß-lactams. An analysis of mutations detected in naturally isolated strains of S. aureus revealed that a significant proportion of them had similar pbp4 and GGDEF domain protein containing phosphodiesterase (gdpP) mutations, making this study clinically significant. This study not only identifies important players of non-classical mechanisms of ß-lactam resistance but also indicates reconsideration of current clinical diagnosis and treatment protocols of S. aureus infections.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas , Resistência beta-Lactâmica , beta-Lactamas , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Mutação
3.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37961375

RESUMO

Infections caused by Staphylococcus aureus are a leading cause of mortality worldwide. S. aureus infections caused by Methicillin-Resistant Staphylococcus aureus (MRSA) are particularly difficult to treat due to their resistance to Next Generation ß-lactams (NGB) such as Methicillin, Nafcillin, Oxacillin etc. Resistance to NGBs, which is alternatively known as broad-spectrum ß-lactam resistance is classically mediated by PBP2a, a Penicillin-Binding Protein encoded by mecA (or mecC) in MRSA. Thus, presence of mec genes among S. aureus serves as the predictor of resistance to NGBs and facilitates determination of the proper therapeutic strategy for a staphylococcal infection. Although far less appreciated, mecA deficient S. aureus strains can also exhibit NGB resistance. These strains, which are collectively termed as Methicillin-Resistant Lacking mec (MRLM) are currently being identified in increasing numbers among natural resistant isolates of S. aureus. The mechanism/s through which MRLMs produce resistance to NGBs remains unknown. In this study, we demonstrate that mutations that alter PBP4 and GdpP functions, which are often present among MRLMs can synergistically mediate resistance to NGBs. Furthermore, our results unravel that this novel mechanism potentially enables MRLMs to produce resistance towards NGBs at levels comparable to that of MRSAs. Our study, provides a fresh new perspective about alternative mechanisms of NGBs resistance, challenging our current overall understanding of high-level, broad-spectrum ß-lactam resistance in S. aureus. It thus suggests reconsideration of the current approach towards diagnosis and treatment of ß-lactam resistant S. aureus infections.

4.
Microbiol Spectr ; 10(6): e0228422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314912

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a group of pathogenic bacteria that are infamously resistant to ß-lactam antibiotics, a property attributed to the mecA gene. Recent studies have reported that mutations associated with the promoter region of pbp4 demonstrated high levels of ß-lactam resistance, suggesting the role of PBP4 as an important non-mecA mediator of ß-lactam resistance. The pbp4-promoter-associated mutations have been detected in strains with or without mecA. Our previous studies that were carried out in strains devoid of mecA described that pbp4-promoter-associated mutations lead to PBP4 overexpression and ß-lactam resistance. In this study, by introducing various pbp4-promoter-associated mutations in the genome of a MRSA strain, we demonstrate that PBP4 overexpression can supplement mecA-associated resistance in S. aureus and can lead to increased ß-lactam resistance. The promoter and regulatory region of pbp4 is shared with a divergently transcribed gene, abcA, which encodes a multidrug exporter. We demonstrate that the promoter mutations caused an upregulation of pbp4 and downregulation of abcA, confirming that the resistant phenotype is associated with PBP4 overexpression. PBP4 has also been associated with staphylococcal pathogenesis, however, its exact role remains unclear. Using a Caenorhabditis elegans model, we demonstrate that strains having increased PBP4 expression are less virulent than wild-type strains, suggesting that ß-lactam resistance mediated via PBP4 likely comes at the cost of virulence. IMPORTANCE Our study demonstrates the ability of PBP4 to be an important mediator of ß-lactam resistance in not only methicillin-susceptible Staphylococcus aureus (MSSA) background strains as previously demonstrated but also in MRSA strains. When present together, PBP2a and PBP4 overexpression can produce increased levels of ß-lactam resistance, causing complications in treatment. Thus, this study suggests the importance of monitoring PBP4-associated resistance in clinical settings, as well as understanding the mechanistic basis of associated resistance, so that treatments targeting PBP4 may be developed. This study also demonstrates that S. aureus strains with increased PBP4 expression are less pathogenic, providing important hints about the role of PBP4 in S. aureus resistance and pathogenesis.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Proteínas de Ligação às Penicilinas/metabolismo , Virulência/genética , Resistência beta-Lactâmica/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
5.
ACS Omega ; 7(36): 32749-32753, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120079

RESUMO

Cyclic-di-AMP (CDA) is a signaling molecule that controls various cellular functions including antibiotic tolerance and osmoregulation in Staphylococcus aureus (S. aureus). In this study, we developed a novel biosensor (bsuO P6-4) for in vivo detection of CDA in S. aureus. The fluorescent biosensor is based on a natural CDA riboswitch from Bacillus subtilis connected at its P6 stem to the dye-binding aptamer Spinach. Our study showed that bsuO P6-4 could detect a wide concentration range of CDA in both laboratory and clinical strains, making it suitable for use in both basic and clinical research applications.

6.
Front Microbiol ; 13: 877074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071974

RESUMO

Background: Klebsiella pneumoniae is a normal component of the human gastrointestinal tract microbiota. However, in some cases, it can cause disease. Over the past 20 years, the prevalence of antibiotic-resistant bacteria, such as carbapenem-resistant K. pneumoniae (CRKP), has been increasing. Materials and methods: We attempted to specifically eliminate CRKP from a mouse model with the human intestinal microbiota. To establish humanized microbiota-colonized mice, we administered K64 CRKP-containing human microbiota to germ-free mice by fecal microbiota transplantation. Then, we used two phages, one targeting the capsule (φK64-1) and one targeting O1 lipopolysaccharide (φKO1-1) of K64 K. pneumoniae, to eliminate CRKP. Results: In untreated control and φKO1-1-treated K64-colonized mice, no change in CRKP was observed, while in mice treated with φK64-1, a transient reduction was observed. In half of the mice treated with both φKO1-1 and φK64-1, CRKP was undetectable in feces by PCR and culture for 60 days. However, in the other 50% of the mice, K. pneumoniae was transiently reduced but recovered 35 days after treatment. Conclusion: Combination treatment with φK64-1 and φKO1-1 achieved long-term decolonization in 52.3% of mice carrying CRKP. Importantly, the composition of the intestinal microbiota was not altered after phage treatment. Therefore, this strategy may be useful not only for eradicating drug-resistant bacterial species from the intestinal microbiota but also for the treatment of other dysbiosis-associated diseases.

7.
Front Microbiol ; 11: 1644, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760384

RESUMO

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is among the top 10 leading causes of death worldwide. The treatment course for TB is challenging; it requires antibiotic administration for at least 6 months, and bacterial drug resistance makes treatment even more difficult. Understanding the mechanisms of resistance is important for improving treatment. To investigate new mechanisms of isoniazid (INH) resistance, we obtained three INH-resistant (INH-R) M. tuberculosis clinical isolates collected by the Taiwan Centers for Disease Control (TCDC) and sequenced genes known to harbor INH resistance-conferring mutations. Then, the relationship between the mutations and INH resistance of these three INH-R isolates was investigated. Sequencing of the INH-R isolates identified three novel katG mutations resulting in R146P, W341R, and L398P KatG proteins, respectively. To investigate the correlation between the observed INH-R phenotypes of the clinical isolates and these katG mutations, wild-type katG from H37Rv was expressed on a plasmid (pMN437-katG) in the isolates, and their susceptibilities to INH were determined. The plasmid expressing H37Rv katG restored INH susceptibility in the two INH-R isolates encoding the W341R KatG and L398P KatG proteins. In contrast, no phenotypic change was observed in the KatG R146P isolate harboring pMN437-katG. H37Rv isogenic mutant with W341R KatG or L398P KatG was further generated. Both showed resistant to INH. In conclusion, W341R KatG and L398P KatG conferred resistance to INH in M. tuberculosis, whereas R146P KatG did not affect the INH susceptibility of M. tuberculosis.

8.
Front Microbiol ; 11: 583194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193223

RESUMO

Tuberculosis (TB) is an infectious respiratory disease caused by Mycobacterium tuberculosis and one of the top 10 causes of death worldwide. Treating TB is challenging; successful treatment requires a long course of multiple antibiotics. Rifampicin (RIF) is a first-line drug for treating TB, and the development of RIF-resistant M. tuberculosis makes treatment even more difficult. To determine the mechanism of RIF resistance in these strains, we searched for novel mutations by sequencing. Four isolates, CDC-1, CDC-2, CDC-3, and CDC-4, had high-level RIF resistance and unique mutations encoding RpoB G158R, RpoB V168A, RpoB S188P, and RpoB Q432insQ, respectively. To evaluate their correlation with RIF resistance, plasmids carrying rpoB genes encoding these mutant proteins were transfected into the H37Rv reference strain. The plasmid complementation of RpoB indicated that G158R, V168A, and S188P did not affect the MIC of RIF. However, the MIC of RIF was increased in H37Rv carrying RpoB Q432insQ. To confirm the correlation between RIF resistance and Q432insQ, we cloned an rpoB fragment carrying the insertion (encoding RpoB Q432insQ) into H37Rv by homologous recombination using a suicide vector. All replacement mutants expressing RpoB Q432insQ were resistant to RIF (MIC > 1 mg/L). These results indicate that RpoB Q432insQ causes RIF resistance in M. tuberculosis.

9.
Oncogene ; 39(37): 5933-5949, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32753649

RESUMO

Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide and prognosis after potentially curative gastrectomy remains poor. Administration of GC-targeting molecules in combination with adjuvant chemo- or radiotherapy following surgical resection has been proposed as a potentially effective treatment option. Here, we have identified DOCK6, a guanine nucleotide exchange factor (GEF) for Rac1 and CDC42, as an independent biomarker for GC prognosis. Clinical findings indicate the positive correlation of higher DOCK6 expression with tumor size, depth of invasion, lymph node metastasis, vascular invasion, and pathological stage. Furthermore, elevated DOCK6 expression was significantly associated with shorter cumulative survival in both univariate and multivariate analyses. Gene ontology analysis of three independent clinical GC cohorts revealed significant involvement of DOCK6-correlated genes in the WNT/ß-catenin signaling pathway. Ectopic expression of DOCK6 promoted GC cancer stem cell (CSC) characteristics and chemo- or radioresistance concomitantly through Rac1 activation. Conversely, depletion of DOCK6 suppressed CSC phenotypes and progression of GC, further demonstrating the pivotal role of DOCK6 in GC progression. Our results demonstrate a novel mechanistic link between DOCK6, Rac1, and ß-catenin in GCCSC for the first time, supporting the utility of DOCK6 as an independent marker of GC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Xenoenxertos , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Fenótipo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia
10.
Front Microbiol ; 9: 1160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899738

RESUMO

Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can cause systemic tuberculosis-like infections in ectotherms and skin infections in humans. Sliding motility correlates with biofilm formation and virulence in most bacteria. In this study, we used a sliding motility assay to screen 2,304 transposon mutants of M. marinum NTUH-M6885 and identified five transposon mutants with decreased sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were present in 3 mutants. We performed reverse-transcription polymerase chain reaction to verify genes from mmar_5438 to mmar_5450, which were found to belong to a single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system. However, deletion of espG or espH resulted in slightly decreased secretion of EsxB (which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system mediates sliding motility and is crucial for biofilm formation. These data provide new insight into M. marinum biofilm formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA