Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Oral Dis ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154262

RESUMO

OBJECTIVE: Small extracellular vesicle (sEV)-mediated intercellular communication is increasingly the key for the understanding of venous malformations (VMs). This study aims to clarify the detailed changes of sEVs in VMs. SUBJECTS AND METHODS: Fifteen VM patients without treatment history and twelve healthy donors were enrolled in the study. sEVs were isolated from both fresh lesions and cell supernatant, and were examined by western blotting, nanoparticle tracking analysis and transmission electron microscopy. Western blot analysis, immunohistochemistry and immunofluorescence were adopted to screening candidate regulator of sEV size. Specific inhibitors and siRNA were employed to validate the role of dysregulated p-AKT/vacuolar protein sorting-associated protein 4B (VPS4B) signaling on the size of sEVs in endothelial cells. RESULTS: The size of sEVs derived from both VM lesion tissues and cell model was significantly increased. VPS4B, whose expression level was mostly significantly downregulated in VM endothelial cells, was responsible for the size change of sEVs. Targeting abnormal AKT activation corrected the size change of sEVs by recovering the expression level of VPS4B. CONCLUSION: Downregulated VPS4B in endothelial cells, resulted from abnormally activated AKT signaling, contributed to the increased size of sEVs in VMs.

2.
Cell Tissue Res ; 390(2): 229-243, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35916917

RESUMO

Vascular wall resident stem cells (VW-SCs) play a key role in vascular formation and remodeling under both physiological and pathological situations. They not only serve as a reservoir to supply all types of vascular cells needed, but also regulate vascular homeostasis by paracrine effects. Venous malformations (VMs) are common congenital vascular malformations which are just characterized by the deficient quantity and abnormal function of vascular cells. However, the existence and role of VW-SCs in VMs is still unclear at present. In this study, the level and distribution of VW-SCs in 22 specimens of VMs were measured by immunochemistry, double-labeling immunofluorescence, and qPCR, followed by the Spearman rank correlation test. We found that both the protein and mRNA expression levels of CD34, vWF, VEGFR2, CD44, CD90, and CD105 were significantly downregulated in VMs compared with that in normal venules. VW-SCs were sporadically distributed or even absent within and outside the endothelium of VMs. The expression of the VW-SC-related markers was positively correlated with the density of both endothelial cells and perivascular cells. All those results and established evidence indicated that VW-SCs were more sporadically distributed with fewer amounts in VMs, which possibly contributing to the deficiency of vascular cells in VMs.


Assuntos
Células Endoteliais , Malformações Vasculares , Humanos , Células Endoteliais/metabolismo , Malformações Vasculares/metabolismo , Células-Tronco/metabolismo , Pericitos/metabolismo
3.
Analyst ; 145(6): 2420-2424, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32064476

RESUMO

The aim of this study was to develop a novel colorimetric sensing method based on enzyme-regulated instant generation of Turnbull's blue, serving as a chromogenic agent, for a sensitive immunoassay for the determination of ochratoxin A (OTA). Unlike the traditional enzyme-linked immunosorbent assay (ELISA), the chromogenic reaction reported herein relies on the immediate formation of Turnbull's blue. K3[Fe(CN)6] rapidly forms a coordinate bond with iron(ii), yielding a blue product. Meanwhile, glucose oxidase (GOx) catalyzes glucose hydrolysis to produce hydrogen peroxide (H2O2), which was used to inhibit the formation of Turnbull's blue by oxidizing iron(ii) to iron(iii). Thus, Turnbull's blue was generated in an enzyme-regulated manner. Accordingly, a competitive-type colorimetric enzyme immunoassay was established using a GOx based nanolabel. Under optimal conditions, the absorbance increased upon increasing the target OTA concentration in the range of 0.01-10 ng mL-1 with a detection limit of 8.3 pg mL-1 estimated at the 3Sblank level. The assay accuracy was validated by analyzing spiked wine samples. The present results potentially provide novel insights into the development of Turnbull's blue-based biological detection methods and colorimetric immunoassay strategies.


Assuntos
Compostos Cromogênicos/química , Colorimetria/métodos , Ferrocianetos/química , Ocratoxinas/análise , Ensaio de Imunoadsorção Enzimática/métodos , Glucose/química , Glucose Oxidase/química , Peróxido de Hidrogênio/química , Hidrólise , Limite de Detecção , Vinho/análise
4.
Anal Bioanal Chem ; 412(13): 3083-3090, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32152652

RESUMO

2,4,6-Trinitrophenol (TNP) is widely used in our daily life; however, excessive use of TNP can lead to a large number of diseases. Therefore, it is necessary to find an effective method to detect TNP. Herein, the rapid fluorescence quenching by TNP was developed for the fluorometric determination of TNP in aqueous medium based on the internal filter effect. Nitrogen-sulfur-codoped carbon nanoparticles (N,S-CNPs), synthesized by a one-pot solvothermal method with the precursors of L-cysteine and citric acid, were applied for the determination of TNP as a fluorescent probe. The excitation peak center of N,S-CNPs and the emission peak center are 340 nm and 423 nm, respectively. The probe can be used in a variety of conditions to detect TNP due to its relatively stable properties. Meanwhile, it has a fast response time (< 1 min), wide linear response range (0.1-40 µM), and low detection limit (43.0 nM). This probe still has excellent selectivity and high sensitivity. The method was also used to detect standard water samples with a satisfactory recovery rate, and it will be used in the application of pollutants and clinical diseases. Graphical abstract.


Assuntos
Carbono/química , Corantes Fluorescentes/química , Nanopartículas/química , Picratos/análise , Limite de Detecção , Microscopia Eletrônica de Transmissão , Pontos Quânticos , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral/métodos
5.
Mikrochim Acta ; 185(2): 92, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29594447

RESUMO

The authors describe a colorimetric immunoassay for the model nalyte aflatoxin B1 (AFB1). It is based on the just-in-time generation of an MnO2 nanocatalyst. Unlike previously developed immunoassay, the chromogenic reaction relies on the just-in-time formation of an oxidase mimic without the aid of the substrate. Potassium permanganate (KMnO4) is converted into manganese dioxide (MnO2) which acts as an oxidase mimic that catalyzes the oxidation 3,3',5,5'-tetramethylbenzidine (TMB) by oxygen to give a blue colored product. In the presence of ascorbic acid (AA), KMnO4 is reduced to Mn(II) ions. This results in a decrease in the amount of MnO2 nanocatalyst. Hence, the oxidation of TMB does not take place. By adding ascorbate oxidase, AA is converted into dehydroascorbic acid which cannot reduce KMnO4. Based on these observations, a colorimetric competitive enzyme immunoassay was developed where ascorbate oxidase and gold nanoparticle-labeled antibody against AFB1 and magnetic beads carrying bovine serum albumin conjugated to AFB1 are used for the determination of AFB1. In presence of AFB1, it will compete with the BSA-conjugated AFB1 (on the magnetic beads) for the labeled antibody against AFB1 on the gold nanoparticles. This makes the amount of ascorbate oxidase/anti-AFB1 antibody-labeled gold nanoparticles, which conjugated on magnetic beads, reduce, and resulted in an increase of ascorbic acid. Under optimal conditions, the absorbance (measured at 652 nm) decreases with increasing AFB1 concentrations in the range from 0.1 to 100 ng mL-1, with a 0.1 ng mL-1 detection limit (at the 3Sblank level). The accuracy of the assay was validated by analyzing spiked peanut samples. The results matched well with those obtained with a commercial ELISA kit. Conceivably, the method is not limited to aflatoxins but has a wide scope in that it may be applied to many other analytes for which respective antibodies are available. Graphical abstract Schematic illustration of ascorbate oxidase (AOx)-mediated potassium permanganate (KMnO4)-responsive ascorbic acid (AA) for visual colorimetric immunoassay of aflatoxin B1 (AFB1) by coupling with hydrolytic reaction of AOx toward AA and the KMnO4-Mn(II)-TMB system [note: 3,3',5,5'-tetramethylbenzidine: TMB].


Assuntos
Aflatoxina B1/análise , Colorimetria/métodos , Imunoensaio/métodos , Aflatoxina B1/imunologia , Anticorpos/imunologia , Arachis/microbiologia , Ascorbato Oxidase , Benzidinas/química , Catálise , Contaminação de Alimentos/análise , Ouro , Compostos de Manganês , Óxidos , Albumina Sérica
6.
Anal Chem ; 87(18): 9473-80, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26291091

RESUMO

Photoelectrochemical (PEC) detection is an emerging and promising analytical tool. However, its actual application still faces some challenges like potential damage of biomolecules (caused by itself system) and intrinsic low-throughput detection. To solve the problems, herein we design a novel split-type photoelectrochemical immunoassay (STPIA) for ultrasensitive detection of prostate specific antigen (PSA). Initially, the immunoreaction was performed on a microplate using a secondary antibody/primer-circular DNA-labeled gold nanoparticle as the detection tag. Then, numerously repeated oligonucleotide sequences with many biotin moieties were in situ synthesized on the nanogold tag via RCA reaction. The formed biotin concatamers acted as a powerful scaffold to bind with avidin-alkaline phosphatase (ALP) conjugates and construct a nanoenzyme reactor. By this means, enzymatic hydrolysate (ascorbic acid) was generated to capture the photogenerated holes in the CdS quantum dot-sensitized TiO2 nanotube arrays, resulting in amplification of the photocurrent signal. To elaborate, the microplate-based immunoassay and the high-throughput detection system, a semiautomatic detection cell (installed with a three-electrode system), was employed. Under optimal conditions, the photocurrent increased with the increasing PSA concentration in a dynamic working range from 0.001 to 3 ng mL(-1), with a low detection limit (LOD) of 0.32 pg mL(-1). Meanwhile, the developed split-type photoelectrochemical immunoassay exhibited high specificity and acceptable accuracy for analysis of human serum specimens in comparison with referenced electrochemiluminescence immunoassay method. Importantly, the system was not only suitable for the sandwich-type immunoassay mode, but also utilized for the detection of small molecules (e.g., aflatoxin B1) with a competitive-type assay format.


Assuntos
Fosfatase Alcalina/metabolismo , Imunoensaio/métodos , Processos Fotoquímicos , Antígeno Prostático Específico/análise , Pontos Quânticos/química , Avidina/metabolismo , Sequência de Bases , Compostos de Cádmio/química , DNA/química , DNA/genética , Primers do DNA/genética , Eletroquímica , Humanos , Limite de Detecção , Modelos Moleculares , Nanotubos/química , Conformação de Ácido Nucleico , Antígeno Prostático Específico/sangue , Sulfetos/química , Titânio/química
7.
Anal Chem ; 86(16): 8400-7, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25084479

RESUMO

This work designs a novel programmable hairpin probe (PHP) for the immobilization-free electrochemical detection of nucleic acid by coupling polymerase/nicking-induced isothermal signal amplification strategy with a biphasic reaction mode for the first time. The designed PHP (including a target-recognition region, a template sequence for enzymatic reaction and an inactivated anti-streptavidin aptamer) could program multiple isothermal reactions in the solution phase accompanying in situ amplified detectable signal at the electrode surface by the labeled ferrocene tag on the PHP. Upon addition of target analyte into the detection solution, target DNA initially hybridized with the recognition region on the PHP. Replication-induced strand-displacement generated an activated anti-streptavidin aptamer with the assistance of polymerase. Then, the polymerase/nicking enzymes could cleave and polymerize repeatedly the replication product, thus resulting in the formation of numerous template-complementary DNA initiator strands. The released initiator strands could retrigger the programmable hairpin probe to produce a large number of activated anti-streptavidin aptamers, which could be captured by the immobilized streptavidin on the electrode, thus activating the electrical contact between the labeled ferrocene and the electrode. Going after the aptamers, the carried ferrocene could produce the in situ amplified electronic signal within the applied potentials. Under optimal conditions, the electrochemical signal increased with the increasing target DNA concentration in the dynamic range from 5 fM to 10 pM with a detection limit (LOD) of 2.56 fM at the 3sblank criterion. Importantly, the methodology with high specificity was also validated and evaluated by assaying 6 target DNA-spiked human serum and calf thymus DNA samples, and the recoveries were 95-110%. Further work for the programmable hairpin probe could be even utilized in a real world sample to detect miRNA-21 at femtomol level.


Assuntos
DNA/sangue , Técnicas Eletroquímicas/métodos , Ressonância de Plasmônio de Superfície/métodos , Animais , Sequência de Bases , Bovinos , DNA/análise , Sondas de DNA/química , Humanos , Hibridização de Ácido Nucleico/métodos
8.
Anal Chem ; 86(10): 5061-8, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24785462

RESUMO

This work reports on a simple and feasible colorimetric immunoassay with signal amplification for sensitive determination of prostate-specific antigen (PSA, used as a model) at an ultralow concentration by using a new enzyme-chromogenic substrate system. We discovered that glucose oxidase (GOx), the enzyme broadly used in enzyme-linked immunosorbent assay (ELISA), has the ability to stimulate in situ formation of squaric acid (SQA)-iron(III) chelate. GOx-catalyzed oxidization of glucose leads to the formation of gluconic acid and hydrogen peroxide (H2O2). The latter can catalytically oxidize iron(II) to iron(III), which can rapidly (<1 min) coordinate with the SQA. Formation of the iron-squarate complex causes the color of the solution to change from bluish purple to bluish red accompanying the increasing absorbance with the increment of iron(III) concentration. On the basis of the SQA-iron(III) system, a new immunoassay protocol with GOx-labeled anti-PSA detection antibody can be designed for the detection of target PSA on capture antibody-functionalized magnetic immunosensing probe, monitored by recording the color or absorbance (λ = 468 nm) of the generated SQA-iron(III) chelate. The absorbance intensity shows to be dependent on the concentration of target PSA. A linear dependence between the absorbance and target PSA concentration is obtained under optimal conditions in the range from 1.0 pg mL(-1) to 30 ng mL(-1) with a detection limit (LOD) of 0.5 pg mL(-1) (0.5 ppt) estimated at the 3Sblank level. The sensitivity displays to be 3-5 orders of magnitude better than those of most commercialized human PSA ELISA kits. In addition, the developed colorimetric immunoassay was validated by assaying 12 human serum samples, receiving in good accordance with those obtained by the commercialized PSA ELISA kit. Importantly, the SQA-based immunosensing system can be further extended for the detection of other low-abundance proteins or biomarkers by controlling the target antibody.


Assuntos
Compostos Cromogênicos/química , Ciclobutanos/química , Quelantes de Ferro/química , Anticorpos Monoclonais/química , Colorimetria/métodos , Glucose Oxidase/química , Humanos , Imunoensaio/métodos , Magnetismo , Antígeno Prostático Específico/análise , Reprodutibilidade dos Testes
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124269, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38608561

RESUMO

A colorimetric immunoassay was built for determination of carcinoembryonic antigen (CEA) based on papain-based colorimetric catalytic sensing system through the use of glucose oxidase (GOx). In the presence of GOx, glucose was catalytically oxidized to produce H2O2. Through the assistance of papain (as a peroxide mimetic enzyme), the signal came from the oxidative color development of 3,3',5,5'-tetramethylbenzidine (TMB, from colorless to blue) catalyzed by the generated H2O2. Herein, a sandwich-type immunoassay was built based on GOx as labels. As the concentration of CEA increased, more GOx-labeled antibodies specifically associate with target, which leaded to more H2O2 generation. Immediately following this, more TMB were oxidized with the addition of papain. Accordingly, the absorbance increased further. As a result, the concentration of CEA is positively correlated with the change in absorbance of the solution. Under optimal conditions, the CEA concentration was linear in the range of 0.05-20.0 ng/mL, and the limit of detection (LOD) reached 37 pg/mL. The papain-based colorimetric immunoassay also exhibited satisfactory repeatability, stability, and selectivity.


Assuntos
Antígeno Carcinoembrionário , Colorimetria , Limite de Detecção , Papaína , Antígeno Carcinoembrionário/análise , Colorimetria/métodos , Papaína/metabolismo , Imunoensaio/métodos , Humanos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/química , Catálise , Benzidinas/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes
10.
Anal Methods ; 16(13): 1901-1907, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38488115

RESUMO

Carcinoembryonic antigen (CEA), a vital biomarker, plays a significant role in the early diagnosis and prognostic estimation of malignant tumors. In this study, a split-type photoelectrochemical immunoassay for the sensitive quantification of CEA has been successfully developed based on the target-induced in situ formation of a Z-type heterojunction. First, gold nanoparticle-decorated ZnIn2S4 (AuNPs/ZnIn2S4) composites were synthesized and used for the fabrication of photoelectrodes. Then, the detection antibody labeled with Ag nanoparticles was formed and applied for the biorecognition of CEA and subsequent liberation of Ag+ ions to induce the in situ formation of Ag2S/AuNPs/ZnIn2S4, a Z-type heterojunction, on the photoelectrode. The Z-type Ag2S/AuNPs/ZnIn2S4 heterojunction with effectively promoted separation of photogenerated charge carriers could lead to a markedly enhanced photocurrent response and highly sensitive quantification of CEA. Moreover, the three-dimensional spatial structure of ZnIn2S4 provides abundant active sites for the reaction and exhibits non-enzymatic properties, which are conducive to the further improvement of the analytical performance of CEA. The developed split-type photoelectrochemical immunoassay with good sensitivity, satisfactory selectivity, reliable stability, wide dynamic linear range (0.01-20 ng mL-1), and low detection limit (7.3 pg mL-1) offers valuable insights into the development of novel PEC biosensing models for the detection of tumor biomarkers and holds potential application value in the field of disease diagnosis.


Assuntos
Antígeno Carcinoembrionário , Nanopartículas Metálicas , Antígeno Carcinoembrionário/química , Nanopartículas Metálicas/química , Ouro/química , Prata , Imunoensaio/métodos
11.
Int J Biol Macromol ; 277(Pt 2): 134351, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089547

RESUMO

Chitosan, as a biomaterial, has increasingly garnered attention. However, its limited solubility in water-only dissolving in certain dilute acidic solutions-substantially restricts its broader application. In this investigation, chitosan underwent a solubilization modification to acquire water solubility, facilitating its dissolution in neutral aqueous mediums. Subsequently, this water-soluble chitosan (WSC) was interlinked with oxidized carboxymethyl cellulose (OCMC), characterized by varied oxidation extents, to synthesize hydrogels. Structural characterization verified the formation of imine bonds resulting from crosslinking interactions between the amino groups of water-soluble chitosan and the aldehyde groups of oxidized carboxymethyl cellulose. Employing performance characterization analysis, it was discerned that an increase in the oxidation level of the oxidized carboxymethyl cellulose corresponded to a denser hydrogel network architecture and the hardness increased from 3.01 N to 6.16 N. Moreover, the capacity of these hydrogels to adsorb methylene blue was meticulously examined. Notably, the hydrogel denoted as WSC/66%OCMC manifested an adsorption capability of 28.08 mg/g for methylene blue. Analytical findings from adsorption kinetics and isotherm studies indicate that the adsorption mechanism of the WSC/66%OCMC hydrogel follows the pseudo-second-order kinetic model and corresponds to the Freundlich isotherm model.


Assuntos
Carboximetilcelulose Sódica , Quitosana , Hidrogéis , Azul de Metileno , Oxirredução , Solubilidade , Água , Azul de Metileno/química , Hidrogéis/química , Hidrogéis/síntese química , Quitosana/química , Carboximetilcelulose Sódica/química , Água/química , Adsorção , Cinética
12.
Int J Biol Macromol ; 264(Pt 1): 130564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431021

RESUMO

This paper presents the formation of a self-healing hydrogel prepared by carboxyethyl modification of chitosan and crosslinking with oxidized sodium alginate. Concurrently, the incorporation of Ca2+ facilitated the formation of "calcium bridges" through intricate coordination with carboxyl moieties, bolstering the attributes of the hydrogel. Various characterization methods, including scanning electron microscopy, texture analysis, and rheological measurements, demonstrated that the introduction of carboxyethyl groups resulted in a more compact hydrogel network structure and improved the hardness and elasticity. The addition of Ca2+ helped to further enhance the mechanical performance of the hydrogel and increase its thermal stability. Then, the adsorption capacity was also investigated, showing adsorption capacities of 46.17 mg/g methylene blue and 46.44 mg/g congo red for carboxyethyl chitosan/oxidized sodium alginate hydrogel, a four-fold increase for congo red versus chitosan/oxidized sodium alginate hydrogel. In addition, the adsorption behavior of CEC/OSA/2%Ca2+ hydrogel can be well described by pseudo-second-order kinetic model and Langmuir adsorption isothermal model. Compared to traditional hydrogels, CEC/OSA/2%Ca2+ hydrogel shows superior mechanical strength, enhanced thermal stability, and improved adsorption capacity, which can effectively adsorb not only methylene blue but also congo red. These advancements demonstrate our hydrogel's innovative properties.


Assuntos
Quitosana , Poluentes Químicos da Água , Quitosana/química , Alginatos/química , Hidrogéis/química , Vermelho Congo , Azul de Metileno/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121782, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36049298

RESUMO

In this work, a split-type dual-mode (colorimetric/photothermal) immunoassay method was designed for point-of-care testing (POCT) detection of mycotoxins (aflatoxin B1, AFB1 as the model analyte) in foodstuffs based on Pt supported on nitrogen-doped carbon amorphous (Pt-CN). The as-synthesized Pt-CN exhibits excellent peroxidase-mimicking activity, which can catalyze the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) into TMBox with sensitive colorimetric readout in the presence of hydrogen peroxide (H2O2). Moreover, the TMBox also serves as a near-infrared (NIR) photothermal agent to convert the colorimetric readout into heat under the irradiation of an 808 nm laser. A competitive-type immunoreaction is carried out between AFB1 and glucose oxidase (GOx)-labeled AFB1-bovine serum albumin (AFB1-BSA-GOx) conjugates. With the formation of immune complexes, the entrained GOx catalyzes the hydrolysis of glucose to generate H2O2, which further involves the Pt-CN catalyzed production of TMBox to increase colorimetric/photothermal readouts. Depending on the degree of TMB oxidation, the dual-mode immunoassay provides a linear range of 1.0 pg/mL to 10 ng/mL, with a limit of detection (LOD) of 0.22 pg/mL for the colorimetric assay and 0.76 pg/mL for the photothermal assay. Moreover, the developed method is successfully used to detect AFB1 in peanuts with acceptable accuracy compared with commercially enzyme-linked immunosorbent assay (ELISA) kits. Significantly, the photothermal readout in this method is recorded on a mobile phone device without any expensive instruments, providing an affordable and convenient tool for food safety testing.


Assuntos
Aflatoxina B1 , Colorimetria , Aflatoxina B1/análise , Complexo Antígeno-Anticorpo , Benzidinas , Carbono , Colorimetria/métodos , Glucose , Glucose Oxidase , Peróxido de Hidrogênio , Imunoensaio/métodos , Limite de Detecção , Nitrogênio , Peroxidases , Soroalbumina Bovina , Platina
14.
Talanta ; 258: 124414, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889191

RESUMO

This work for the first time reports on a simple and rapid colorimetric immunoassay with rapid coordination of ascorbic acid 2-phosphate (AAP) and iron (III) for determination of carcinoembryonic antigen (CEA, used as a model) by using Fe2O3 nanoparticle based-chromogenic substrate system. The signal was produced rapidly (1 min) from the coordination of AAP and iron (III) with color development of colorless to brown. TD-DFT calculation methods were employed to simulate the UV-Vis spectra of AAP-Fe2+ and AAP-Fe3+ complexes. Moreover, Fe2O3 nanoparticle could be dissolved with the aid of acid, thereby releasing free iron (III). Herein, a sandwich-type immunoassay was established based on Fe2O3 nanoparticle as labels. As target CEA concentration increased, the number of Fe2O3 labelled-antibodies (bound specifically) increased, resulting in loading more Fe2O3 nanoparticle on platform. The absorbance increased as the number of free iron (III), derived from Fe2O3 nanoparticle, increased. So, the absorbance of reaction solution is positively correlated with antigen concentration. Under optimal conditions, the current results showed good performance for CEA detection in the range 0.02-10.0 ng/mL with a detection limit of 11 pg/mL. Moreover, the repeatability, stability, and selectivity of the colorimetric immunoassay were also acceptable.


Assuntos
Antígeno Carcinoembrionário , Nanopartículas , Antígeno Carcinoembrionário/química , Ferro , Compostos Cromogênicos , Colorimetria/métodos , Imunoensaio/métodos , Limite de Detecção
15.
Analyst ; 137(19): 4425-7, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22854759

RESUMO

A novel, simple, signal-enhanced electrochemical sensor was designed for sensitive and selective determination of mercury ions by using target-triggered conformational change of DNA pseudoknots with the assistance of auxiliary DNA strands.


Assuntos
DNA/química , Técnicas Eletroquímicas , Mercúrio/análise , Íons/química , Conformação de Ácido Nucleico
16.
Biosens Bioelectron ; 216: 114664, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36057240

RESUMO

Lead halide perovskites have become a potential candidate as electrochemiluminescence (ECL) emitters owing to their appealing electronic-to-optical merits. It remains extremely challenging, however, to improve stability and enhance charge transfer. Herein, a self-enhanced superstructures was constructed by successively loading N-doped graphene quantum dot (NGQDs) and CsPbBr3 perovskite nanocrystals (PNCs) onto graphene supported two-dimensional mesoporous SiO2 nanosheets (2D mSiO2-G). This special architecture ensures improved stability and accelerated charge transport, leading to efficient self-enhanced ECL between NGQDs and PNCs in a confined mesoporous structure. Additionally, using molecular imprinting (MIP) as a protective barrier, an ECL sensor with high affinity for Ochratoxin A (OTA) detection was developed, which expressed the widest linear range of 10-5 ng/mL to 1.0 ng/mL and the lowest detection limit of 0.2 pg/mL. This work catches a glimpse of a new generation of desirable perovskite-based ECL emitters, which would be beneficial for its further application.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas , Pontos Quânticos , Técnicas Biossensoriais/métodos , Compostos de Cálcio , Grafite/química , Medições Luminescentes/métodos , Nanopartículas/química , Óxidos , Pontos Quânticos/química , Dióxido de Silício/química , Titânio
17.
Talanta ; 247: 123546, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594834

RESUMO

Nanozymes are a series of elaborately designed nanomaterials that can mimic the catalytic sites of natural enzymes for reactions. Bypassing the tedious design and preparation of nanomaterial, in this work, we report on a novel just-in-time production system of copper hexacyanoferrate nanoparticles (CHNPs), which act as an oxidase-mimicking nanozyme. This system can rapidly produce CHNPs nanozyme on demand by simply mixing Cu(II) with potassium hexacyanoferrate(III) (K3[Fe(CN)6]). It is found that once K3[Fe(CN)6] is reduced to K4[Fe(CN)6], the formation of CHNPs is inhibited. Therefore, the just-in-time production system of CHNPs was coupled with alkaline phosphatase (ALP) to construct an enzyme-controllable just-in-time production (ECJP) system, in which ALP could inhibit the production of by catalyzing the hydrolysis of ascorbic acid 2-phosphate (AAP) to generating ascorbic acid (AA). The ECJP system is then used to probe the activity of ALP by employing 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) as the chromogenic substrate, and a detection limit of 0.003 U L-1 was achieved. Moreover, by adapting ALP as the enzyme label, an ECJP system-based colorimetric immunoassay protocol was established for sensitive detection of aflatoxin B1 (AFB1), and a detection limit as low as 0.73 pg mL-1 was achieved. The developed immunoassay method is successfully applied to the detection of AFB1 in peanut samples. The operation of ECJP system is quite simple and the coupling of ALP with CHNPs nanozyme can arouse dual enzyme-like cascade signal amplification. So, we believe this work can offer a new perspective for the development of nanozymes-based biodetection methods and colorimetric immunoassay strategies.


Assuntos
Colorimetria , Nanopartículas , Fosfatase Alcalina , Colorimetria/métodos , Cobre , Ferrocianetos , Imunoensaio/métodos , Limite de Detecção , Oxirredutases
18.
Talanta ; 233: 122541, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215044

RESUMO

The relative humidity (RH) determination is crucial in many fields. Based on the phosphorescent properties of room-temperature phosphorescent (RTP) carbon dots, the RTP carbon dots as a probe are expected to be used to rapidly detect relative humidity. In this study, matrix-free room-temperature phosphorescent N-doped carbon dots (N-CDs) were successfully prepared from urea, succinic acid, and acrylamide using a hydrothermal method. The as-synthesized N-CDs had good biocompatibility and water solubility. The N-CDs emitted blue fluorescence and green phosphorescence. Moreover, the N-CD powder exhibited stable phosphorescence with a phosphorescence lifetime of 158 ms (afterglow time to the naked eye for ~7 s). Because H2O molecules affected the afterglow time, the as-prepared N-CD test paper for the first time could be applied as a probe to monitor RH, the afterglow time of the N-CD test paper is linearly related to the RH (y = -0.0729x+7.042, R2 = 0.998) and the RH detection range is 0%-85%. And the results were consistent with those obtained using a hygrometer. In addition, the N-CD solution could also be used as an encryption ink in the advanced information security field.


Assuntos
Carbono , Fluorescência , Umidade , Temperatura
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119231, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33277209

RESUMO

Hypochlorite ions (ClO-) are widely used in bleaching agents and disinfectants. However, high concentrations of chloride species are harmful to human health. Therefore, effective methods for the detection of ClO- ions are required. In this study, using 4-fluorophthalic acid and glycine, nitrogen-fluorine co-doped carbon nanodots (N,F-CDs) were synthesized by one-pot hydrothermal synthesis for use as a fluorescent probe for the fluorometric detection of ClO- in aqueous media, based on the inhibition of n â†’ π* transitions. The excitation and emission peak centers of the N,F-CDs are at 387 and 545 nm, respectively. The N,F-CDs show a fast quenching response (<1 min) for ClO- and can be used in a wide pH range (pH 4-13). Under optimal conditions, the fluorescence intensity decreased with increase in the ClO- concentration from 0 to 35 µM, and a low limit of detection (9.6 nM) was achieved. This probe possesses excellent selectivity and high sensitivity and was used to analyze standardized samples of piped water, achieving a satisfactory recovery. Thus, this nitrogen-fluorine co-doped nanodot probe is promising for the detection of pollutants.

20.
J Int Med Res ; 49(7): 3000605211029557, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34308692

RESUMO

OBJECTIVE: Synovitis is a joint disease that seriously affects patient quality of life, but there are currently no diagnostic markers. The albumin to fibrinogen ratio (AFR) and monocyte to lymphocyte ratio (MLR) are non-invasive and cost-effective markers for various systemic inflammatory diseases. However, these markers have not yet been investigated for synovitis. This cross-sectional study evaluated the predictive ability of AFR and MLR in patients with non-specific knee synovitis. METHODS: One hundred fifty-five patients with knee synovitis and 108 healthy control patients were enrolled. Patient characteristics, blood parameters, AFRs, and MLRs were assessed, and the diagnostic value of these factors was determined. RESULTS: Among 125 patients included, patients with synovitis had a lower AFR and higher MLR than control subjects. The diagnostic values of AFR and MLR were 0.86 and 0.84, respectively, and higher compared with other parameters by receiver operating characteristic curve assessments. Additionally, MLR was negatively correlated with AFR. Late-stage patients showed significantly lower AFRs and significantly higher MLRs than early-stage patients. Binary logistic regression analyses indicated that AFR was an independent predictor for synovitis severity. CONCLUSIONS: The AFR and MLR had high diagnostic value for knee synovitis. The AFR was an independent predictor for synovitis severity.


Assuntos
Qualidade de Vida , Sinovite , Estudos Transversais , Fibrinogênio/análise , Humanos , Linfócitos , Sinovite/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA