Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 33(4): 1196-1211, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33604650

RESUMO

Arabidopsis thaliana CONSTANS (CO) is an essential transcription factor that promotes flowering by activating the expression of the floral integrator FLOWERING LOCUS T (FT). A number of histone modification enzymes involved in the regulation of flowering have been identified, but the involvement of epigenetic mechanisms in the regulation of the core flowering regulator CO remains unclear. Previous studies have indicated that the transcription factors, FLOWERING BHLH1 (FBH1), FBH2, FBH3, and FBH4, function redundantly to activate the expression of CO. In this study, we found that the KDM3 group H3K9 demethylase JMJ28 interacts with the FBH transcription factors to activate CO by removing the repressive mark H3K9me2. The occupancy of JMJ28 on the CO locus is decreased in the fbh quadruple mutant, suggesting that the binding of JMJ28 is dependent on FBHs. Furthermore, genome-wide occupancy profile analyses indicate that the binding of JMJ28 to the genome overlaps with that of FBH3, indicating a functional association of JMJ28 and FBH3. Together, these results indicate that Arabidopsis JMJ28 functions as a CO activator by interacting with the FBH transcription factors to remove H3K9me2 from the CO locus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Flores/fisiologia , Histona Desmetilases/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Histona Desmetilases/genética , Histonas/metabolismo , Lisina/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética
2.
Plant J ; 103(5): 1735-1743, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445267

RESUMO

Plant trichomes are large single cells that are organized in a regular pattern and play multiple biological functions. In Arabidopsis, trichome development is mainly governed by the core trichome initiation regulators, including the R2R3 type MYB transcript factor GLABRA 1 (GL1), bHLH transcript factors GLABRA 3/ENHANCER OF GLABRA 3 (GL3/EGL3), and the WD-40 repeat protein TRANSPARENT TESTA GLABRA 1 (TTG1), as well as the downstream trichome regulator GLABRA 2 (GL2). GL1, GL3/EGL3, and TTG1 can form a trimeric activation complex to activate GL2, which is required for the trichome initiation and maintenance during cell differentiation. Arabidopsis JMJ29 is a JmjC domain-containing histone demethylase belonging to the JHDM2/KDM3 group. Members of the JHDM2/KDM3 group histone demethylases are mainly responsible for the H3K9me1/2 demethylation. In the present study, we found that the trichome density on leaves and inflorescence stems is significantly decreased in jmj29 mutants. The expression of the core trichome regulators GL1, GL2, and GL3 is decreased in jmj29 mutants as well. Furthermore, JMJ29 can directly target GL3 and remove H3K9me2 on the GL3 locus. Collectively, we found that Arabidopsis JMJ29 is involved in trichome development by directly regulating GL3 expression. These results provide further insights into the molecular mechanism of epigenetic regulation in Arabidopsis trichome development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores Genéricos de Transcrição/fisiologia , Tricomas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo , Tricomas/metabolismo
3.
Biomacromolecules ; 21(12): 5282-5291, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33155800

RESUMO

Water-soluble conjugated polymers (WCPs) composed of a hydrophobic polythiophene main chain with hydrophilic tertiary amine side-chains can directly self-assemble into sphere-like nano-objects in an aqueous solution due to phase separation between the hydrophilic and hydrophobic segments of the polymeric structure. Due to the presence of gas-responsive tertiary amine moieties in the spherical structure, the resulting polymers rapidly and reversibly tune their structural features, surface charge, and fluorescence performance in response to alternating carbon dioxide (CO2) and nitrogen (N2) bubbling, which leads to significantly enhanced fluorescence and surface charge switching properties and a stable cycle of on and off switching response. In vitro studies confirmed that the CO2-treated polymers exhibited extremely low cytotoxicity and enhanced cellular uptake ability in normal and tumor cells, and thus possess significantly improved fluorescence stability, distribution, and endocytic uptake efficiency within cellular organisms compared to the pristine polymer. More importantly, in vivo assays demonstrated that the CO2-treated polymers displayed excellent biocompatibility and high fluorescence enhancement in living zebrafish, whereas the fluorescence intensity and stability of zebrafish incubated with the pristine polymer decreased linearly over time. Thus, these CO2 and N2-responsive WCPs could potentially be applied as multifunctional fluorescent probes for in vivo biological imaging.


Assuntos
Dióxido de Carbono , Água , Animais , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Peixe-Zebra
4.
Nucleic Acids Res ; 46(20): 10669-10681, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30124938

RESUMO

In Arabidopsis, the circadian clock central oscillator genes are important cellular components to generate and maintain circadian rhythms. There is a negative feedback loop between the morning expressed CCA1 (CIRCADIAN CLOCK ASSOCIATED 1)/LHY (LATE ELONGATED HYPOCOTYL) and evening expressed TOC1 (TIMING OF CAB EXPRESSION 1). CCA1 and LHY negatively regulate the expression of TOC1, while TOC1 also binds to the promoters of CCA1 and LHY to repress their expression. Recent studies indicate that histone modifications play an important role in the regulation of the central oscillators. However, the regulatory relationship between histone modifications and the circadian clock genes remains largely unclear. In this study, we found that the Lysine-Specific Demethylase 1 (LSD1)-like histone demethylases, LDL1 and LDL2, can interact with CCA1/LHY to repress the expression of TOC1. ChIP-Seq analysis indicated that LDL1 targets a subset of genes involved in the circadian rhythm regulated by CCA1. Furthermore, LDL1 and LDL2 interact with the histone deacetylase HDA6 and co-regulate TOC1 by histone demetylation and deacetylaion. These results provide new insight into the molecular mechanism of how the circadian clock central oscillator genes are regulated through histone modifications.


Assuntos
Proteínas de Arabidopsis/genética , Relógios Circadianos/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/genética , Histona Desmetilases/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Código das Histonas/genética , Histona Desacetilases/metabolismo , Histona Desmetilases/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Fatores de Transcrição/metabolismo
5.
Commun Biol ; 6(1): 219, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828846

RESUMO

The Arabidopsis H3K9 methyltransferases KRYPTONITE/SUPPRESSOR OF VARIEGATION 3-9 HOMOLOG 4 (KYP/SUVH4), SUVH5 and SUVH6 are redundantly involved in silencing of transposable elements (TEs). Our recent study indicated that KYP/SUVH5/6 can directly interact with the histone deacetylase HDA6 to synergistically regulate TE expression. However, the function of KYP/SUVH5/6 in plant development is still unclear. The transcriptional factors ASYMMETRIC LEAVES1 (AS1) and AS2 form a transcription complex, which is involved in leaf development by repressing the homeobox genes KNOTTED-LIKE FROM ARABIDOPSIS THALIANA 1 (KNAT1) and KNAT2. In this study, we found that KYP and SUVH5/6 directly interact with AS1-AS2 to repress KNAT1 and KNAT2 by altering histone H3 acetylation and H3K9 dimethylation levels. In addition, KYP can directly target the promoters of KNAT1 and KNAT2, and the binding of KYP depends on AS1. Furthermore, the genome-wide occupancy profile of KYP indicated that KYP is enriched in the promoter regions of coding genes, and the binding of KYP is positively correlated with that of AS1 and HDA6. Together, these results indicate that Arabidopsis H3K9 methyltransferases KYP/SUVH5/6 are involved in leaf development by interacting with AS1-AS2 to alter histone H3 acetylation and H3K9 dimethylation from KNAT1 and KNAT2 loci.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Metiltransferases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Folhas de Planta , Proteínas de Homeodomínio/genética , Proteínas de Arabidopsis/metabolismo , Histona Desacetilases/metabolismo
6.
J Colloid Interface Sci ; 552: 166-178, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31125827

RESUMO

HYPOTHESIS: Invoking cooperative assembly of the uracil-functionalized supramolecular polymer BU-PPG [uracil end-capped poly(propylene glycol)] upon association with the nucleobase adenine derivative A-MA [methyl 3-(6-amino-9H-purin-9-yl)propanoate] as a model drug provides a new concept to control and tune the properties of supramolecular complexes and holds significant potential for the development of safer, more effective drug delivery systems. EXPERIMENTS: BU-PPG and A-MA were successfully developed and exhibited specific recognition and high affinity, which enabled reversible complementary adenine-uracil (A-U) hydrogen bonding-induced formation of spherical micelles in aqueous solution. The self-assembly and controllable A-MA release behavior of BU-PPG/A-MA micelles were studied using morphological analysis and optical and light scattering techniques to investigate the effect of photoirradiation and temperature on the complementary hydrogen bond interactions between BU-PPG and A-MA. FINDINGS: The resulting micelles possess unusual physical properties, including controlled photoreactivity kinetics, controllable self-assembled morphology and low cytotoxicity in vitro, as well as reversible temperature-responsive behavior. Importantly, irradiated micelles exhibited excellent long-term structural stability under normal physiological conditions and serum disturbance. Increasing the temperature triggered rapid release of A-MA by disrupting A-U complexes. These findings represent an entirely new, promising strategy for the development of multi-controlled release drug delivery nanocarriers based on complementary hydrogen bonding interactions.


Assuntos
Adenina/química , Preparações de Ação Retardada/química , Raios Ultravioleta , Uracila/química , Adenina/análogos & derivados , Adenina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Células HeLa , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas , Nanopartículas/química , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia , Temperatura , Uracila/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA