Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 244: 109932, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762008

RESUMO

Drugs that can treat one disease may either be detrimental or beneficial toward another due to possible cross-interactions. Therefore, care in choosing a suitable drug for patients with multiple diseases is crucial in successful patient management. This study explores several currently available ophthalmic drugs used to treat common ocular diseases to understand how they can affect the amyloidogenesis of a transforming growth factor ß-induced protein (TGFBIp) peptide fragment found in abundance in the corneal protein aggregation deposits of lattice corneal dystrophy (LCD) patients. Results from this study provided supporting evidence that some drugs intended to treat other diseases can enhance or inhibit fibrillar aggregation of TGFBIp peptide, which may have potential implication of affecting the disease progression of LCD by either worsening or ameliorating it. Comparisons of the different properties of ophthalmic compounds explored in this study may also provide some guidance for future design of drugs geared toward the treatment of LCD.


Assuntos
Distrofias Hereditárias da Córnea , Proteínas da Matriz Extracelular , Fator de Crescimento Transformador beta , Humanos , Proteínas da Matriz Extracelular/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Distrofias Hereditárias da Córnea/tratamento farmacológico , Fator de Crescimento Transformador beta/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Soluções Oftálmicas , Amiloide/metabolismo
2.
Int J Biol Macromol ; 264(Pt 1): 130404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417752

RESUMO

Due to their organized structures, remarkable stiffness, and nice biocompatibility and biodegradability, amyloid fibrils serve as building blocks for versatile sustainable materials. Silver nanoparticles (AgNPs) are commonly used as the nano-catalysts for various electrochemical reactions. Given their large specific surface area and high surface energy, AgNPs exhibit high aggregation propensity, which hampers their electrocatalytic performance. Food protein wastes have been identified to be associated with climate change and environmental impacts, and a surplus of whey proteins in dairy industries causes high biological and chemical demands, and greenhouse gas emissions. This study is aimed at constructing sustainable electrode surface modifiers using AgNP-deposited whey protein amyloid fibrils (AgNP/WPI-AFs). AgNP/WPI-AFs were synthesized and characterized via spectroscopic techniques, electron microscopy, and X-ray diffraction. Next, the electrocatalytic performance of AgNP/WPI-AF modified electrode was assessed via para-nitrophenol (p-NP) reduction combined with various electrochemical analyses. Moreover, the reaction mechanism of p-NP electrocatalysis on the surface of AgNP/WPI-AF modified electrode was investigated. The detection range, limit of detection, sensitivity, and selectivity of the AgNP/WPI-AF modified electrode were evaluated accordingly. This work not only demonstrates an alternative for whey valorization but also highlights the feasibility of using amyloid-based hybrid materials as the electrode surface modifier for electrochemical sensing purposes.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Proteínas do Soro do Leite , Prata/química , Amiloide , Soro do Leite , Eletrodos , Técnicas Eletroquímicas/métodos
3.
Int J Biol Macromol ; 249: 126114, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541475

RESUMO

Incorporation of the nano-based carriers into drug delivery provides a promising alternative to overcome the limitations of the conventional chemotherapy. Doxorubicin (DOXO) is an effective chemotherapeutic drug widely used in chemotherapy for breast cancer treatment. A globular protein bovine serum albumin (BSA) holds great potential as carriers in pharmaceutical applications. This work is aimed at developing the DOXO-coupled glycated BSA nanoparticles via desolvation method for improving the capability of targeting the GLUT5 transporters over-expressed on breast cancer cells. Fructosamine assay and Fourier transform infrared spectroscopy were employed to determine the content of fructosamine structure and structural changes on the surfaces of nanoparticles, respectively. Additionally, the synthesized BSA nanoparticles were further characterized by electron microscopy and dynamic light scattering. Results revealed that the DOXO-coupled glycated BSA nanoparticles were spherically shaped with a hydrodynamic diameter of ~60.74 nm and a ζ-potential of ~ - 42.20 mV. Moreover, the DOXO release behavior of as-synthesized DOXO-coupled glycated BSA nanoparticles was examined under different conditions. Finally, the DOXO-coupled glycated BSA nanoparticles were found to exhibit cytotoxicity toward both MCF-7 and MDA-MB-231 cells. Our findings evidently suggested that the drug-coupled glycated BSA nanoparticles serve as the potential candidates for targeted drug delivery platform used in breast cancer therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Portadores de Fármacos/química , Neoplasias da Mama/tratamento farmacológico , Soroalbumina Bovina/química , Frutosamina , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Albumina Sérica , Nanopartículas/química , Tamanho da Partícula
4.
Membranes (Basel) ; 13(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37755183

RESUMO

In this study, a polyacrylonitrile nanofiber membrane was first hydrolyzed and then functionalized with tris(hydroxymethyl)aminomethane (P-Tris), then used as an affinity nanofiber membrane for lysozyme adsorption in membrane chromatography. The dynamic adsorption behavior of lysozyme was investigated in a flow system under various operating parameters, including adsorption pHs, initial feed lysozyme concentration, loading flow rate, and the number of stacked membrane layers. Four different kinetic models, pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion kinetic models, were applied to experimental data from breakthrough curves of lysozyme. The results showed that the dynamic adsorption results were fitted well with the pseudo-second-order kinetic model. The breakthrough curve experimental results show significant differences in the breakthrough time, the dynamic binding capacity, the length of the mass transfer zone, and the utilization rate of the membrane bed under different operating parameters. Four dynamic adsorption models (i.e., Bohart-Adams, Thomas, Yoon-Nelson, and BDST models) were used to analyze the breakthrough curve characteristics of the dynamic adsorption experiments. Among them, the Yoon-Nelson model was the best model to fit the breakthrough curve. However, some of the theoretical results based on the Thomas and Bohart-Adams model analyses of the breakthrough curve fit well with the experimental data, with an error percentage of <5%. The Bohart-Adams model has the largest difference from the experimental results; hence it is not suitable for breakthrough curve analysis. These results significantly impact dynamic kinetics studies and breakthrough curve characteristic analysis in membrane bed chromatography.

5.
Polymers (Basel) ; 15(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987222

RESUMO

The properties of amyloid fibrils, e.g., unique structural characteristics and superior biocompatibility, make them a promising vehicle for drug delivery. Here, carboxymethyl cellulose (CMC) and whey protein isolate amyloid fibril (WPI-AF) were used to synthesize amyloid-based hybrid membranes as vehicles for the delivery of cationic and hydrophobic drugs (e.g., methylene blue (MB) and riboflavin (RF)). The CMC/WPI-AF membranes were synthesized via chemical crosslinking coupled with phase inversion. The zeta potential and scanning electron microscopy results revealed a negative charge and a pleated surface microstructure with a high content of WPI-AF. FTIR analysis showed that the CMC and WPI-AF were cross-linked via glutaraldehyde and the interacting forces between membrane and MB or RF was found to be electrostatic interaction and hydrogen bonding, respectively. Next, the in vitro drug release from membranes was monitored using UV-vis spectrophotometry. Additionally, two empirical models were used to analyze the drug release data and relevant rate constant and parameters were determined accordingly. Moreover, our results indicated that in vitro drug release rates depended on the drug-matrix interactions and transport mechanism, which could be controlled by altering the WPI-AF content in membrane. This research provides an excellent example of utilizing two-dimensional amyloid-based materials for drug delivery.

6.
Food Chem ; 406: 135028, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36446280

RESUMO

The performance of lysozyme adsorption by the aminated nanofiber membrane immobilized with Reactive Green 19 (RG19) dyes was evaluated in batch and flow systems. The physicochemical properties of the dye-immobilized nanofiber membrane were characterized. The parameters of batch-mode adsorption of lysozyme (e.g., pH, initial dye concentration, and lysozyme concentration) were optimized using the Taguchi method. In a flow process, the factors influencing the dynamic binding performance for lysozyme adsorption in the chicken egg white (CEW) solution include immobilized dye concentration, adsorption pH value, feed flow rate, and feed CEW concentration. The impact of these operating conditions on the lysozyme purification process was investigated. Under optimal conditions, the recovery yield and purification factor of lysozyme achieved from the one-step adsorption process were 98.52% and 143 folds, respectively. The dye-affinity nanofiber membrane also did not exhibit any significant loss in its binding capacity and purification performance after five consecutive uses.


Assuntos
Corantes , Nanofibras , Adsorção , Corantes/química , Concentração de Íons de Hidrogênio , Muramidase/química , Nanofibras/química , Ligantes , Clara de Ovo/química
7.
Int J Biol Macromol ; 213: 1098-1114, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35688277

RESUMO

The unique structural characteristics and superior biocompatibility make the protein nanofibers promising immobilization platforms/substrates for catalysts/enzymes. Metal nanoparticles have been employed as the catalysts in industries due to their excellent catalytic activity and stability, whereas their high surface energy leads to nanoparticle aggregation, thereby hampering their catalytic performance. Here, amyloid fibril (AF) derived from whey protein isolate (WPI) was chosen as the support of silver nanoparticles (AgNP) and utilized for the catalytic reduction of methylene blue (MB). The one-dimensional amyloid-based hybrid materials (AgNP/WPI-AF) were first synthesized via chemical or photochemical route. The characterization of AgNP/WPI-AF by UV-vis spectrophotometry and electron microscopy revealed that the sizes of AgNP on WPI-AF's surface ranged from 2 to 30 nm. Next, the catalytic performances of AgNP/WPI-AF prepared by various routes for MB degradation were investigated. Additionally, the kinetic data were analyzed using two different models and the apparent rate constants and thermodynamic parameters were further determined accordingly. Moreover, the reusability of AgNP/WPI-AF was assessed by monitoring the percentage removal of MB over consecutive filtering cycles. Our results indicated that Langmuir-Hinshelwood-type mechanism better described the catalytic MB reduction using AgNP/WPI-AF. This work provides a nice example of application of nanoparticle-amyloid fibril composite materials for catalysis.


Assuntos
Nanopartículas Metálicas , Prata , Amiloide , Catálise , Nanopartículas Metálicas/química , Azul de Metileno/química , Prata/química , Proteínas do Soro do Leite
8.
Membranes (Basel) ; 12(3)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35323807

RESUMO

N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) is a type of quaternary ammonium chitosan derivative with an antibacterial activity superior to the pristine chitosan, but its electrospinnability is limited. In this study, polyvinyl alcohol (PVA) was blended with HTCC to improve the electrospinnability of nanofibers. The electrospinning of PVA-HTCC nanofiber membranes was optimized in terms of structural stability and antimicrobial performance. Based on scanning electron microscopic analysis, the morphology and diameter of the produced nanofibers were influenced by the applied voltage, flow rate of the feed solution, and weight ratio of the polymer blend. An increase in the HTCC content decreased the average nanofiber diameter. The maximum water solubility of the PVA-HTCC nanofibers reached the maximum value of 70.92% at 12 h and 25 °C. The antibacterial activity of PVA-HTCC nanofiber membranes against Escherichia coli was ~90%, which is significantly higher than that of PVA-chitosan nanofiber membrane. Moreover, the antibacterial efficiency of PVA-HTCC nanofiber membranes remained unaffected after 5 cycles of antibacterial treatment. The good antibacterial performance and biocompatibility of PVA-HTCC nanofiber membrane makes them attractive for biomedical and biochemical applications that necessitate sterile conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA