Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Med Vet Entomol ; 38(3): 291-302, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38554285

RESUMO

Scorpionism is an increasing public health problem in the world. Although no specific methodology or product is currently available for the control of those arachnids, the use of insecticides could be an effective tool. Chlorpyrifos is one of the insecticides used, but to date, whether scorpions recognise surfaces with that insecticide and how it affects their physiology and/or biochemistry is unknown. In the present study, we observed that scorpions recognise surfaces with 0.51 and 8.59 µg/cm2 of chlorpyrifos and avoid those areas. The 0.51 µg/cm2 concentration produced a decrease in acetylcholinesterase and an increase in catalase, superoxide dismutase and glutathione S-transferase, whereas the 8.59 µg/cm2 concentration evoked a decrease in acetylcholinesterase and an increase in catalase and glutathione S-transferase. Using the comet assay, we observed that the insecticide at 0.17, 0.51 and 8.59 µg/cm2 caused DNA damage. Finally, we found that the insecticide does not generate significant variations in glutathione peroxidase, glutathione reductase, the amount of protein or lipid peroxidation. The present results offer a comprehensive understanding of how scorpions respond, both at the biochemical and behavioural levels, when exposed to insecticides.


Assuntos
Clorpirifos , Inseticidas , Escorpiões , Animais , Escorpiões/fisiologia , Inseticidas/farmacologia , Clorpirifos/farmacologia , Comportamento Animal/efeitos dos fármacos
2.
An Acad Bras Cienc ; 94(3): e20210159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976362

RESUMO

Analysis of energy expense during development has achieved special interest through time on account of the crucial role of the consumption of resources required for offspring survival. Spider eggs have a fixed composition as well as some initial energy that is supplied by mothers. These resources are necessary to support the metabolic expense not only through the embryonic period but also during the post-embryonic period, as well as for post emerging activities before spiderlings become self-sustaining. Depletion of these resources would be critical for spiders since it could give rise to prey competition as well as filial cannibalism. Even though spiders represent a megadiverse order, information regarding the metabolic requirements during spiders development is very scarce. In this study, we analyse the changes in protein, lipid and carbohydrate content as well as the variation in lipovitellin reserves and hemocyanin content during Polybetes pythagoricus development. Our results show that lipovitellins and phospholipids represent the major energy source throughout embryonic and post-embryonic development. Lipovitellin apolipoproteins are gradually consumed but are later depleted after dispersion. Phosphatidylethanolamine is mainly consumed during the post-embryonic period, while triacylglycerides are consumed after juveniles' dispersion. Finally, hemocyanin concentration starts to increase in postembryonic stages.


Assuntos
Aranhas , Animais , Canibalismo , Carboidratos , Desenvolvimento Embrionário , Hemocianinas/química , Hemocianinas/metabolismo
3.
Subcell Biochem ; 94: 219-231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189301

RESUMO

Hemocyanin (Hc), a copper-containing extracellular multimeric protein, is the major protein component of hemolymph in different arachnid groups. Hc possesses 7 or 8 very well-characterized types of monomers with molecular weights ranging from 70 to 85 kDa, organized in hexamers or multiple of hexamers. The present chapter compiles the existing data with relation to the function of this protein in the arachnids. Hc has as main function the reversible transport of O2, but it shows many secondary though not less important functions. With reference to this, it has been described that Hc can transport hydrophobic molecules (lipid-derived hormones and lipids) to the different organs, having a key role in the lipid transport system. In arachnids, like in other arthropods and invertebrates, Hc has phenoloxidase function which is related to different metabolic processes such as melanin formation and defense against pathogens. In addition, Hc has additional defensive functions since it can serve as precursor for the production of antimicrobial peptides. In short, the evolution of this protein has led to the development of multiple functions essential for organisms possessing this protein.


Assuntos
Aracnídeos , Hemocianinas , Animais , Aracnídeos/enzimologia , Aracnídeos/metabolismo , Hemocianinas/metabolismo , Monofenol Mono-Oxigenase/metabolismo
4.
J Therm Biol ; 96: 102841, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33627278

RESUMO

Different organisms (mainly poikilotherms) are subject to environmental fluctuations that could affect their normal physiological functioning (e.g., by destabilization of biomembranes and rupture of biomolecules). As a result, animals regulate their body temperature and adapt to different environmental conditions through various physiological strategies. These adaptations are crucial in all organisms, although they are more relevant in those that have reached a great adaptive diversity such as scorpions. Within scorpions, the genus Urophonius presents species with winter activity, being this a peculiarity within the Order and an opportunity to study the strategies deployed by these organisms when facing different temperatures. Here, we explore three basic issues of lipid remodeling under high and low temperatures, using adults and juveniles of Urophonius achalensis and U. brachycentrus. First, as an indicator of metabolic state, we analyzed the lipidic changes in different tissues observing that low temperatures generate higher quantities of triacylglycerols and fewer amount of structural lipids and sphyngomielin. Furthermore, we studied the participation of fatty acids in adaptive homeoviscosity, showing that there are changes in the quantity of saturated and unsaturated fatty acids at low temperature (mainly 16:0, 18:0, 18:1 and 18:2). Finally, we observe that there are quantitative and qualitative variations in the cuticular hydrocarbons (with possible water barrier and chemical recognition function). These fluctuations are in some cases species-specific, metabolic-specific, tissue-specific and in others depend on the ontogenetic state.


Assuntos
Aclimatação , Temperatura Baixa , Escorpiões/metabolismo , Animais , Ácidos Graxos/metabolismo , Feminino , Hepatopâncreas/metabolismo , Hidrocarbonetos/metabolismo , Metabolismo dos Lipídeos , Músculos/metabolismo , Especificidade da Espécie
5.
Plant Cell Environ ; 42(9): 2554-2566, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31069808

RESUMO

Due to the preeminence of reductionist approaches, understanding of plant responses to combined stresses is limited. We speculated that light-quality signals of neighbouring vegetation might increase susceptibility to heat shocks because shade reduces tissue temperature and hence the likeness of heat shocks. In contrast, plants of Arabidopsis thaliana grown under low-red/far-red ratios typical of shade were less damaged by heat stress than plants grown under simulated sunlight. Neighbour signals reduce the activity of phytochrome B (phyB), increasing the abundance of PHYTOCHROME-INTERACTING FACTORS (PIFs). The phyB mutant showed high tolerance to heat stress even under simulated sunlight, and a pif multiple mutant showed low tolerance under simulated shade. phyB and red/far-red ratio had no effects on seedlings acclimated with nonstressful warm temperatures before the heat shock. The phyB mutant showed reduced expression of several fatty acid desaturase (FAD) genes and less proportion of fully unsaturated fatty acids and electrolyte leakage of membranes exposed to heat shocks. Red-light-activated phyB also reduced thermotolerance of dark-grown seedlings but not via changes in FADs expression and membrane stability. We propose that the reduced photosynthetic capacity linked to thermotolerant membranes would be less costly under shade, where the light input limits photosynthesis.


Assuntos
Arabidopsis/efeitos da radiação , Membrana Celular/efeitos da radiação , Fitocromo B/metabolismo , Termotolerância/efeitos da radiação , Aclimatação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Aquecimento Global , Resposta ao Choque Térmico , Fitocromo B/genética , Plântula/efeitos da radiação , Termotolerância/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Heliyon ; 10(13): e34036, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071691

RESUMO

Loxosceles spp. spiders can cause serious public health issues. Chemical control is commonly used, leading to health and environmental problems. Identifying molecular targets and using them with natural compounds can help develop safer and eco-friendlier biopesticides. We studied the kinetics and predicted structural characteristics of arginine kinase (EC 2.7.3.3) from Loxosceles laeta (LlAK), a key enzyme in the energy metabolism of these organisms. Additionally, we explored (-)-epigallocatechin gallate (EGCG), a green tea flavonoid, as a potential lead compound for the LlAK active site through fluorescence and in silico analysis, such as molecular docking and molecular dynamics (MD) simulation and MM/PBSA analyses. The results indicate that LlAK is a highly efficient enzyme (K m Arg 0.14 mM, K m ATP 0.98 mM, k cat 93 s-1, k cat/K m Arg 630 s-1 mM-1, k cat/K m ATP 94 s-1 mM-1), which correlates with its structure similarity to others AKs (such as Litopenaeus vannamei, Polybetes pythagoricus, and Rhipicephalus sanguineus) and might be related to its important function in the spider's energetic metabolism. Furthermore, the MD and MM/PBSA analysis suggests that EGCG interacted with LlAK, specifically at ATP/ADP binding site (RMSD <1 nm) and its interaction is energetically favored for its binding stability (-40 to -15 kcal/mol). Moreover, these results are supported by fluorescence quenching analysis (K d 58.3 µM and K a 1.71 × 104 M-1). In this context, LlAK is a promising target for the chemical control of L. laeta, and EGCG could be used in combination with conventional pesticides to manage the population of Loxosceles species in urban areas.

7.
Environ Toxicol Chem ; 42(6): 1293-1308, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36919993

RESUMO

The toxicity of pesticides to organisms depends on the total amount of chemical exposure. Toxicity can be minimized if the organism recognizes the pesticide and alters its behavior. Furthermore, the physical barrier of cuticular hydrocarbons can prevent the entrance of the pesticide into the organism. Finally, if the pesticide enters the body, the organism experiences physiological changes favoring detoxification and the maintenance of homeostasis. We analyzed the behavioral and metabolic response of the spider Polybetes pythagoricus at different times of exposure to the organophosphate pesticide chlorpyrifos. First we observed that the individuals are capable of recognizing and avoiding surfaces treated with pesticides based on a behavioral analysis. Subsequently, we characterized cuticular hydrocarbons as a possible barrier against pesticides. Then we observed that the pesticide provoked histological damage, mainly at the level of the midgut diverticula. Finally, we analyzed the activity of several of the spider's enzymes linked to oxidative stress after exposure to chlorpyrifos for different lengths of time (6, 24, and 48 h). We observed that catalase activity was high at the start, whereas the activity of superoxide dismutase and glutathione S-transferase changed significantly at 48 h. Lipid peroxidation became high at 6 h, but decreased at 48 h. In conclusion, although P. pythagoricus can avoid contact with chlorpyrifos, this pesticide causes activation of the antioxidant system when it enters the body. Our results make a significant contribution to the ecotoxicology of spiders. Environ Toxicol Chem 2023;42:1293-1308. © 2023 SETAC.


Assuntos
Clorpirifos , Inseticidas , Praguicidas , Aranhas , Animais , Inseticidas/metabolismo , Clorpirifos/toxicidade , Aranhas/metabolismo , Catalase/metabolismo , Praguicidas/toxicidade , Antioxidantes/metabolismo , Estresse Oxidativo
8.
Environ Toxicol Chem ; 41(9): 2152-2161, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35723420

RESUMO

The aim of the present study was to evaluate the effects of the neonicotinoid insecticide imidacloprid (commercial formulation) on juveniles of the spider Misumenops maculissparsus (Keyserling, 1891). We first analyzed whether spiders recognized the presence of the insecticide on surfaces and in drinking water (in the form of droplets). Next, we investigated if the insecticide generated histologic, physiologic, and/or biochemical alterations. We observed that spiders do not detect the insecticide on a surface (e.g., paper) or in the form of droplets. After the imidacloprid ingestion by droplet intake, most spiders exhibited a paralysis that reverted after 48 h. Consequently, we observed histopathologic damage (i.e., pigment accumulation, necrosis, and cuticle detachment), and an increased catalase (CAT) activity and total-protein concentration in the individuals treated. The activities of glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, however, did not undergo significant variations. The results obtained emphasize the need to consider different classes of biomarkers, such as CAT and other proteins, to identify and evaluate the histologic, biologic, and biochemical effects of imidacloprid, one of the most widely used insecticides. Environ Toxicol Chem 2022;41:2152-2161. © 2022 SETAC.


Assuntos
Inseticidas , Aranhas , Animais , Antioxidantes , Glutationa Transferase/metabolismo , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Aranhas/metabolismo
9.
Mar Genomics ; 37: 74-81, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28923556

RESUMO

Palaemonetes argentinus, an abundant freshwater prawn species in the northern and central region of Argentina, has been used as a bioindicator of environmental pollutants as it displays a very high sensitivity to pollutants exposure. Despite their extraordinary ecological relevance, a lack of genomic information has hindered a more thorough understanding of the molecular mechanisms potentially involved in detoxification processes of this species. Thus, transcriptomic profiling studies represent a promising approach to overcome the limitations imposed by the lack of extensive genomic resources for P. argentinus, and may improve the understanding of its physiological and molecular response triggered by pollutants. This work represents the first comprehensive transcriptome-based characterization of the non-model species P. argentinus to generate functional genomic annotations and provides valuable resources for future genetic studies. Trinity de novo assembly consisted of 24,738 transcripts with high representation of detoxification (phase I and II), anti-oxidation, osmoregulation pathways and DNA replication and bioenergetics. This crustacean transcriptome provides valuable molecular information about detoxification and biochemical processes that could be applied as biomarkers in further ecotoxicology studies.


Assuntos
Desintoxicação Metabólica Fase II/genética , Desintoxicação Metabólica Fase I/genética , Palaemonidae/genética , Palaemonidae/metabolismo , Transcriptoma , Animais , Argentina , Biomarcadores/análise
10.
PeerJ ; 5: e3787, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28924503

RESUMO

Energy buffering systems are key for homeostasis during variations in energy supply. Spiders are the most important predators for insects and therefore key in terrestrial ecosystems. From biomedical interest, spiders are important for their venoms and as a source of potent allergens, such as arginine kinase (AK, EC 2.7.3.3). AK is an enzyme crucial for energy metabolism, keeping the pool of phosphagens in invertebrates, and also an allergen for humans. In this work, we studied AK from the Argentininan spider Polybetes pythagoricus (PpAK), from its complementary DNA to the crystal structure. The PpAK cDNA from muscle was cloned, and it is comprised of 1068 nucleotides that encode a 384-amino acids protein, similar to other invertebrate AKs. The apparent Michaelis-Menten kinetic constant (Km ) was 1.7 mM with a kcat of 75 s-1. Two crystal structures are presented, the apoPvAK and PpAK bound to arginine, both in the open conformation with the active site lid (residues 310-320) completely disordered. The guanidino group binding site in the apo structure appears to be organized to accept the arginine substrate. Finally, these results contribute to knowledge of mechanistic details of the function of arginine kinase.

11.
J Exp Zool A Ecol Genet Physiol ; 323(8): 547-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26173645

RESUMO

Hemocyanin of the spider Polybetes pythagoricus, in addition to its typical role as an oxygen transporter, also exhibits a phenoloxidase activity induced by micellar concentrations of SDS. In the present work, we found the kinetic parameters Km and Vmax of Polybetes pythagoricus hemocyanin (PpHc) PO activity to be 0.407 mM and 0.081 µmolmin(-1) mg protein(-1) , respectively. Dopamine was used as the substrate with SDS at a final concentration of 10 mM and a 30-min incubation at 25°C. Conformational changes in Hc associated with the SDS treatment were analyzed using far-UV circular dichroism, intrinsic fluorescence and absorption spectroscopy. The secondary and tertiary structural changes of PpHc induced by SDS led to increases in α-helical content and tryptophan fluorescence intensity. A reduction in the absorption spectrum at 340 nm in the presence of SDS was also observed. These results suggest that the SDS-induced PO activity of PpHc can be ascribed to conformational changes in the local environment of the typer-3 copper active site.


Assuntos
Hemocianinas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Aranhas/enzimologia , Animais , Cinética
12.
Artigo em Inglês | MEDLINE | ID: mdl-26303276

RESUMO

Within arthropods most of the information related to the type of mobilization and storage of lipids is found in insects and crustaceans. Literature is scarce with relation to scorpions. This order is a remarkably important model of the biochemistry, since it is characterized as an animal with very primitive traits which have varied minimally through time. In the present study we characterize and compare lipids and fatty acids present in three species of scorpion: Timogenes elegans, Timogenes dorbignyi, and Brachistosternus ferrugineus, focusing the study on the main organs/tissues involved in the dynamics of lipids. As found in the fat body of insects, hepatopancreas of crustaceans and midgut diverticula of spiders, the hepatopancreas of the three species studied here turned out to be the organ of lipid storage (great quantity of triacylglycerides). With relation to the hemolymph and muscles, a great quantity of phospholipids was observed, which is possibly involved in membrane formation. It is important to highlight that unlike what happens in insects, in scorpions the main circulating energetic lipid is the triacylglyceride. This lipid is found in greater proportion in the hepatopancreas of females, surely for reproduction. The fatty acid of the different organs/tissues analyzed remained constant in the three species studied with certain characteristic patterns, thus observing saturated and unsaturated most abundant fatty acids of C16 and C18. Finally, it could be observed that in T. elegans, T. dorbignyi and B. ferrugineus scorpions, there is a lack of 20:4 that generates a special condition within fatty acids of arthropods.


Assuntos
Metabolismo Energético , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Escorpiões/fisiologia , Animais , Argentina , Feminino , Hemolinfa/metabolismo , Hepatopâncreas/metabolismo , Masculino , Músculos/metabolismo , Especificidade de Órgãos , Caracteres Sexuais , Especificidade da Espécie , Triglicerídeos/metabolismo
13.
Comp Biochem Physiol B Biochem Mol Biol ; 165(3): 172-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23618789

RESUMO

In oviparous species, proteins and lipids found in the vitellus form the lipoproteins called lipovitellins that are the major source of energy for the development, growth, and survival of the embryo. The energy resources provided by the lipovitellins have not yet been investigated in the Order Araneae. Using the wolf spider Schizocosa malitiosa (Lycosidae) as an experimental model, we identified and characterized the lipovitellins present in the cytosol, focusing on the energetic contribution of those lipoprotein particles in the vitellus. Two lipovitellins (LV) named SmLV1 and SmLV2 were isolated. SmLV1 is a high-density lipoprotein with 67% lipid and 3.6% carbohydrate, and SmLV2 is a very high-density lipoprotein with 9% lipid and 8.8% carbohydrate. Through electrophoresis in native conditions we observed that SmLV1 has a molecular mass of 559 kDa composed of three apolipoproteins of 116, 87, and 42 kDa, respectively. SmLV2 comprised several proteins composed of different proportions of the same subunits (135, 126, 109, and 70 kDa). The principal lipids of these lipovitellins are sphingomyelin + lysophosphatidylcholine, esterified sterols, and phosphatidylcholine. Lipovitellin-free cytosol contains abundant phospatidylcholine and triacylglyceride related to the yolk nuclei (the vitellus organizing center). The principal fatty acids of SmLV1 and SmLV2 are 18:2 n-6, 18:1 n-9, and 16:0. Spectrophotometry detected no pigments in either the lipovitellins or the cytosol. The egg caloric content was 92 cal/g, at proportions of 59.8% protein, 20.1% carbohydrate, and 19.9% lipid. SmLV1 and SmLV2 provided 19.5% and 17.1% of the calories, respectively. Both lipovitellins contribute mainly with proteins (15.8-18%), with the input of carbohydrates and lipids being lower than 1.3%.


Assuntos
Proteínas do Ovo/isolamento & purificação , Proteínas do Ovo/metabolismo , Óvulo/metabolismo , Aranhas , Animais , Citosol/química , Citosol/metabolismo , Proteínas do Ovo/química , Feminino , Modelos Animais , Óvulo/química , Aranhas/embriologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-21056682

RESUMO

Despite vitellins being essential yolk proteins, their presence in spiders remains almost unknown. Two vitellins from the spider Polybetes pythagoricus, named LV1 and LV2, were isolated and their size, shape, lipids, fatty acids, proteins and carbohydrates moieties were determined. LV1 has a density similar to that of HDL with 49.3% lipids, and LV2 has a density similar to that of VHDL with 9.7% lipids. The major neutral lipid present in both vitellins was found to be esterified cholesterol, 16% for LV1 and 24% for LV2. The major fatty acid was 18:1n-9 in LV1 and LV2. Results from native PAGE showed a lipoprotein of 550 kDa for LV1 and three lipoproteins of 571, 400 and 257 kDa for LV2. SDS-PAGE evidenced two major apolipoproteins of 64 and 25 kDa in LV1. The three lipoproteins of LV2 were electroeluted and analyzed by SDS-PAGE, showing different proportions of the same apolipoproteins (181, 67 and 60 kDa). LVs were analyzed by spectrophotometry, immunochemical and electron microscopy, showing that the respiratory pigment hemocyanin was not present as apolipoprotein. This fact evidenced that these LVs were not related to hemolymphatic lipoproteins.


Assuntos
Vitelinas/química , Vitelinas/isolamento & purificação , Animais , Argentina , Carboidratos/química , Feminino , Hemocianinas/química , Lipídeos/química , Aranhas
15.
Artigo em Inglês | MEDLINE | ID: mdl-21889600

RESUMO

It has been already reported that most hemolymphatic lipids in the spider Polybetes pythagoricus are transported by HDL1 and VHDL lipoproteins. We studied in vitro the lipid transfer among midgut-diverticula (M-diverticula), and either hemolymph or purified lipoproteins as well as between hemolymphatic lipoproteins. M-diverticula and hemolymph were labeled by in vivo (14)C-palmitic acid injection. In vitro incubations were performed between M-diverticula and either hemolymph or isolated lipoproteins. Hemolymph lipid uptake was associated to HDL1 (67%) and VHDL (32%). Release from hemolymph towards M-diverticula showed the opposite trend, VHDL 75% and HDL1 45%. Isolated lipoproteins showed a similar behavior to that observed with whole hemolymph. Lipid transfer between lipoproteins showed that HDL1 transfer more (14)C-lipids to VHDL than vice versa. Only 38% FFA and 18% TAG were transferred from M-diverticula to lipoproteins, while on the contrary 75% and 73% of these lipids, respectively, were taken up from hemolymph. A similar trend was observed regarding lipoprotein phospholipids. This study supports the hypothesis that HDL1 and hemocyanin-containing VHDL are involved in the uptake and release of FFA, phospholipids and triacylglycerols in the spider P. pythagoricus. The data support a directional flow of lipids from HDL1 and VHDL suggesting a mode of lipid transport between lipoproteins and M-diverticula.


Assuntos
Transporte Biológico/fisiologia , Sistema Digestório/metabolismo , Hemolinfa/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipoproteínas/metabolismo , Aranhas/metabolismo , Animais , Sistema Digestório/química , Hemocianinas/química , Hemocianinas/metabolismo , Hemolinfa/química , Lipídeos/química , Lipoproteínas/química , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Aranhas/química
16.
J Insect Physiol ; 55(12): 1118-24, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19686754

RESUMO

The importance of midgut diverticula (M-diverticula) and hemolymph lipoproteins in the lipid homeostasis of Polybetes phythagoricus was studied. Radioactivity distribution in tissues and hemolymph was analyzed either after feeding or injecting [1-(14)C]-palmitate. In both experiments, radioactivity was mostly taken up by M-diverticula that synthesized diacylglycerols, triacylglycerols and phospholipids in a ratio close to its lipid class composition. M-diverticula total lipids represent 8.08% (by wt), mostly triacylglycerols (74%) and phosphatidylcholine (13%). Major fatty acids were (in decreasing order of abundance) 18:1n-9, 18:2n-6, 16:0, 16:1n-7, 18:0, 18:3n-3. Spider hemocyanin-containing lipoprotein (VHDL) transported 83% of the circulating label at short incubation times. After 24h, VHDL and HDL-1 (comparable to insect lipophorin) were found to be involved in the lipid uptake and release from M-diverticula, HDL-2 playing a negligible role. Lipoprotein's labelled lipid changed with time, phospholipids becoming the main circulating lipid after 24h. These results indicate that arachnid M-diverticula play a central role in lipid synthesis, storage and movilization, analogous to insect fat body or crustacean midgut gland. The relative contribution of HDL-1 and VHDL to lipid dynamics indicated that, unlike insects, spider VHDL significantly contributes to the lipid exchange between M-diverticula and hemolymph.


Assuntos
Aracnídeos/metabolismo , Proteínas de Insetos/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Animais , Aracnídeos/química , Transporte Biológico , Sistema Digestório/metabolismo , Lipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA