Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Microb Cell Fact ; 23(1): 63, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402186

RESUMO

BACKGROUND: Yeasts exhibit promising potential for the microbial conversion of crude glycerol, owing to their versatility in delivering a wide range of value-added products, particularly lipids. Sweetwater, a methanol-free by-product of the fat splitting process, has emerged as a promising alternative feedstock for the microbial utilization of crude glycerol. To further optimize sweetwater utilization, we compared the growth and lipid production capabilities of 21 oleaginous yeast strains under different conditions with various glycerol concentrations, sweetwater types and pH. RESULTS: We found that nutrient limitation and the unique carbon composition of sweetwater boosted significant lipid accumulation in several strains, in particular Rhodosporidium toruloides NRRL Y-6987. Subsequently, to decipher the underlying mechanism, the transcriptomic changes of R. toruloides NRRL Y-6987 were further analyzed, indicating potential sugars and oligopeptides in sweetwater supporting growth and lipid accumulation as well as exogenous fatty acid uptake leading to the enhanced lipid accumulation. CONCLUSION: Our comparative study successfully demonstrated sweetwater as a cost-effective feedstock while identifying R. toluroides NRRL Y-6987 as a highly promising microbial oil producer. Furthermore, we also suggested potential sweetwater type and strain engineering targets that could potentially enhance microbial lipid production.


Assuntos
Glicerol , Leveduras , Glicerol/química , Ácidos Graxos/química , Carbono , Biocombustíveis
2.
Biotechnol Bioeng ; 119(7): 1740-1754, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35435243

RESUMO

Chinese hamster ovary (CHO) cells are widely used for producing recombinant proteins. To enhance their productivity and product quality, media reformulation has been a key strategy, albeit with several technical challenges, due to the myriad of complex molecular mechanisms underlying media effects on culture performance. Thus, it is imperative to characterize metabolic bottlenecks under various media conditions systematically. To do so, we combined partial least square regression (PLS-R) with the flux balance analysis of a genome-scale metabolic model to elucidate the physiological states and metabolic behaviors of human alpha-1 antitrypsin producing CHO-DG44 cells grown in one commercial and another two in-house media under development. At the onset, PLS-R was used to identify metabolite exchanges that were correlated to specific growth and productivity. Then, by comparing metabolic states described by resultant flux distributions under two of the media conditions, we found suboptimal level of four nutrients and two metabolic wastes, which plausibly hindered cellular growth and productivity; mechanistically, lactate and ammonia recycling were modulated by glutamine and asparagine metabolisms in the media conditions, and also by hitherto unsuspected folate and choline supplements. Our work demonstrated how multivariate statistical analysis can be synergistically combined with metabolic modeling to uncover the mechanistic elements underlying differing media performance. It thus paved the way for the systematic identification of nutrient targets for medium reformulation to enhance recombinant protein production in CHO cells.


Assuntos
Técnicas de Cultura de Células , Animais , Células CHO , Cricetinae , Cricetulus , Meios de Cultura/metabolismo , Humanos , Proteínas Recombinantes/genética
3.
Biotechnol Bioeng ; 118(11): 4305-4316, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289087

RESUMO

A robust monoclonal antibody (mAb) bioprocess requires physiological parameters such as temperature, pH, or dissolved oxygen to be well-controlled as even small variations in them could potentially impact the final product quality. For instance, pH substantially affects N-glycosylation, protein aggregation, and charge variant profiles, as well as mAb productivity. However, relatively less is known about how pH jointly influences product quality and titer. In this study, we investigated the effect of pH on culture performance, product titer, and quality profiles by applying longitudinal multi-omics profiling, including transcriptomics, proteomics, metabolomics, and glycomics, at three different culture pH set points. The subsequent systematic analysis of multi-omics data showed that pH set points differentially regulated various intracellular pathways including intracellular vesicular trafficking, cell cycle, and apoptosis, thereby resulting in differences in specific productivity, product titer, and quality profiles. In addition, a time-dependent variation in mAb N-glycosylation profiles, independent of pH, was identified to be mainly due to the accumulation of mAb proteins in the endoplasmic reticulum disrupting cellular homeostasis over culture time. Overall, this multi-omics-based study provides an in-depth understanding of the intracellular processes in mAb-producing CHO cell line under varied pH conditions, and could serve as a baseline for enabling the quality optimization and control of mAb production.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura de Células , Ciclo Celular , Metabolômica , Oxigênio/metabolismo , Animais , Células CHO , Cricetulus , Glicosilação , Concentração de Íons de Hidrogênio
4.
Metab Eng ; 60: 138-147, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330653

RESUMO

Chinese hamster ovary (CHO) cells are most prevalently used for producing recombinant therapeutics in biomanufacturing. Recently, more rational and systems approaches have been increasingly exploited to identify key metabolic bottlenecks and engineering targets for cell line engineering and process development based on the CHO genome-scale metabolic model which mechanistically characterizes cell culture behaviours. However, it is still challenging to quantify plausible intracellular fluxes and discern metabolic pathway usages considering various clonal traits and bioprocessing conditions. Thus, we newly incorporated enzyme kinetic information into the updated CHO genome-scale model (iCHO2291) and added enzyme capacity constraints within the flux balance analysis framework (ecFBA) to significantly reduce the flux variability in biologically meaningful manner, as such improving the accuracy of intracellular flux prediction. Interestingly, ecFBA could capture the overflow metabolism under the glucose excess condition where the usage of oxidative phosphorylation is limited by the enzyme capacity. In addition, its applicability was successfully demonstrated via a case study where the clone- and media-specific lactate metabolism was deciphered, suggesting that the lactate-pyruvate cycling could be beneficial for CHO cells to efficiently utilize the mitochondrial redox capacity. In summary, iCHO2296 with ecFBA can be used to confidently elucidate cell cultures and effectively identify key engineering targets, thus guiding bioprocess optimization and cell engineering efforts as a part of digital twin model for advanced biomanufacturing in future.


Assuntos
Células CHO/metabolismo , Enzimas/genética , Enzimas/metabolismo , Animais , Cricetinae , Cricetulus , Tamanho do Genoma , Glucose/metabolismo , Cinética , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Genéticos , Oxirredução , Ácido Pirúvico/metabolismo
5.
Crit Rev Microbiol ; 46(3): 288-299, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32434436

RESUMO

In the past decade, there has been a tremendous increase in studies on the link between oral microbiome and systemic diseases. However, variations in study design and confounding variables across studies often lead to inconsistent observations. In this narrative review, we have discussed the potential influence of study design and confounding variables on the current sequencing-based oral microbiome-systemic disease link studies. The current limitations of oral microbiome-systemic link studies on type 2 diabetes mellitus, rheumatoid arthritis, pregnancy, atherosclerosis, and pancreatic cancer are discussed in this review, followed by our perspective on how artificial intelligence (AI), particularly machine learning and deep learning approaches, can be employed for predicting systemic disease and host metadata from the oral microbiome. The application of AI for predicting systemic disease as well as host metadata requires the establishment of a global database repository with microbiome sequences and annotated host metadata. However, this task requires collective efforts from researchers working in the field of oral microbiome to establish more comprehensive datasets with appropriate host metadata. Development of AI-based models by incorporating consistent host metadata will allow prediction of systemic diseases with higher accuracies, bringing considerable clinical benefits.


Assuntos
Inteligência Artificial , Diagnóstico , Doença , Microbiota , Boca/microbiologia , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/microbiologia , Aterosclerose/diagnóstico , Aterosclerose/microbiologia , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/microbiologia , Feminino , Humanos , Metagenômica , Redes Neurais de Computação , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/microbiologia , Gravidez
6.
Biotechnol Bioeng ; 116(9): 2117-2129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31066037

RESUMO

Chinese hamster ovary (CHO) cells are the most prevalent mammalian cell factories for producing recombinant therapeutic proteins due to their ability to synthesize human-like post-translational modifications and ease of maintenance in suspension cultures. Currently, a wide variety of CHO host cell lines has been developed; substantial differences exist in their phenotypes even when transfected with the same target vector. However, relatively less is known about the influence of their inherited genetic heterogeneity on phenotypic traits and production potential from the bioprocessing point of view. Herein, we present a global transcriptome and proteome profiling of three commonly used parental cell lines (CHO-K1, CHO-DXB11, and CHO-DG44) in suspension cultures and further report their growth-related characteristics, and N- and O-glycosylation patterns of host cell proteins (HCPs). The comparative multi-omics and subsequent genome-scale metabolic network model-based enrichment analyses indicated that some physiological variations of CHO cells grown in the same media are possibly originated from the genetic deficits, particularly in the cell-cycle progression. Moreover, the dihydrofolate reductase deficient DG44 and DXB11 possess relatively less active metabolism when compared to K1 cells. The protein processing abilities and the N- and O-glycosylation profiles also differ significantly across the host cell lines, suggesting the need to select host cells in a rational manner for the cell line development on the basis of recombinant protein being produced.


Assuntos
Proteoma/genética , Proteoma/metabolismo , Transcriptoma , Animais , Células CHO , Cricetulus , Glicosilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
7.
BMC Plant Biol ; 18(1): 62, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649979

RESUMO

BACKGROUND: The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb. DESCRIPTION: The first draft genome sequences of P. ginseng cultivar "Chunpoong" were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page. CONCLUSION: This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.


Assuntos
Genoma de Planta/genética , Panax/genética , Panax/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Ontologia Genética , Ginsenosídeos/metabolismo
8.
Plant Biotechnol J ; 16(11): 1904-1917, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29604169

RESUMO

Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.


Assuntos
Genoma de Planta/genética , Panax/genética , Adaptação Biológica/genética , Evolução Biológica , Diploide , Genes de Cloroplastos/genética , Genes de Plantas/genética , Ginsenosídeos/biossíntese , Panax/metabolismo , Tetraploidia
9.
Microb Cell Fact ; 17(1): 167, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359263

RESUMO

BACKGROUND: Cellular metabolism is tightly regulated by hard-wired multiple layers of biological processes to achieve robust and homeostatic states given the limited resources. As a result, even the most intuitive enzyme-centric metabolic engineering endeavours through the up-/down-regulation of multiple genes in biochemical pathways often deliver insignificant improvements in the product yield. In this regard, targeted engineering of transcriptional regulators (TRs) that control several metabolic functions in modular patterns is an interesting strategy. However, only a handful of in silico model-added techniques are available for identifying the TR manipulation candidates, thus limiting its strain design application. RESULTS: We developed hierarchical-Beneficial Regulatory Targeting (h-BeReTa) which employs a genome-scale metabolic model and transcriptional regulatory network (TRN) to identify the relevant TR targets suitable for strain improvement. We then applied this method to industrially relevant metabolites and cell factory hosts, Escherichia coli and Corynebacterium glutamicum. h-BeReTa suggested several promising TR targets, many of which have been validated through literature evidences. h-BeReTa considers the hierarchy of TRs in the TRN and also accounts for alternative metabolic pathways which may divert flux away from the product while identifying suitable metabolic fluxes, thereby performing superior in terms of global TR target identification. CONCLUSIONS: In silico model-guided strain design framework, h-BeReTa, was presented for identifying transcriptional regulator targets. Its efficacy and applicability to microbial cell factories were successfully demonstrated via case studies involving two cell factory hosts, as such suggesting several intuitive targets for overproducing various value-added compounds.


Assuntos
Simulação por Computador , Corynebacterium glutamicum/genética , Escherichia coli/genética , Transcrição Gênica , Algoritmos , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genoma Bacteriano , Metaboloma
10.
Curr Genomics ; 19(8): 712-722, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30532650

RESUMO

In nature, microbes do not exist in isolation but co-exist in a variety of ecological and biological environments and on various host organisms. Due to their close proximity, these microbes interact among themselves, and also with the hosts in both positive and negative manners. Moreover, these interactions may modulate dynamically upon external stimulus as well as internal community changes. This demands systematic techniques such as mathematical modeling to understand the intrinsic community behavior. Here, we reviewed various approaches for metabolic modeling of microbial communities. If detailed species-specific information is available, segregated models of individual organisms can be constructed and connected via metabolite exchanges; otherwise, the community may be represented as a lumped network of metabolic reactions. The constructed models can then be simulated to help fill knowledge gaps, and generate testable hypotheses for designing new experiments. More importantly, such community models have been developed to study microbial interactions in various niches such as host microbiome, biogeochemical and bioremediation, waste water treatment and synthetic consortia. As such, the metabolic modeling efforts have allowed us to gain new insights into the natural and synthetic microbial communities, and design interventions to achieve specific goals. Finally, potential directions for future development in metabolic modeling of microbial communities were also discussed.

11.
Brief Bioinform ; 15(1): 108-22, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23131418

RESUMO

Flux balance analysis (FBA) is a widely used computational method for characterizing and engineering intrinsic cellular metabolism. The increasing number of its successful applications and growing popularity are possibly attributable to the availability of specific software tools for FBA. Each tool has its unique features and limitations with respect to operational environment, user-interface and supported analysis algorithms. Presented herein is an in-depth evaluation of currently available FBA applications, focusing mainly on usability, functionality, graphical representation and inter-operability. Overall, most of the applications are able to perform basic features of model creation and FBA simulation. COBRA toolbox, OptFlux and FASIMU are versatile to support advanced in silico algorithms to identify environmental and genetic targets for strain design. SurreyFBA, WEbcoli, Acorn, FAME, GEMSiRV and MetaFluxNet are the distinct tools which provide the user friendly interfaces in model handling. In terms of software architecture, FBA-SimVis and OptFlux have the flexible environments as they enable the plug-in/add-on feature to aid prospective functional extensions. Notably, an increasing trend towards the implementation of more tailored e-services such as central model repository and assistance to collaborative efforts was observed among the web-based applications with the help of advanced web-technologies. Furthermore, most recent applications such as the Model SEED, FAME, MetaFlux and MicrobesFlux have even included several routines to facilitate the reconstruction of genome-scale metabolic models. Finally, a brief discussion on the future directions of FBA applications was made for the benefit of potential tool developers.


Assuntos
Análise do Fluxo Metabólico/estatística & dados numéricos , Software , Algoritmos , Biologia Computacional , Simulação por Computador , Genômica/estatística & dados numéricos , Análise do Fluxo Metabólico/tendências , Modelos Biológicos , Modelos Genéticos , Fenótipo , Interface Usuário-Computador
12.
Plant Physiol ; 169(4): 3002-20, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453433

RESUMO

Light quality is an important signaling component upon which plants orchestrate various morphological processes, including seed germination and seedling photomorphogenesis. However, it is still unclear how plants, especially food crops, sense various light qualities and modulate their cellular growth and other developmental processes. Therefore, in this work, we initially profiled the transcripts of a model crop, rice (Oryza sativa), under four different light treatments (blue, green, red, and white) as well as in the dark. Concurrently, we reconstructed a fully compartmentalized genome-scale metabolic model of rice cells, iOS2164, containing 2,164 unique genes, 2,283 reactions, and 1,999 metabolites. We then combined the model with transcriptome profiles to elucidate the light-specific transcriptional signatures of rice metabolism. Clearly, light signals mediated rice gene expressions, differentially regulating numerous metabolic pathways: photosynthesis and secondary metabolism were up-regulated in blue light, whereas reserve carbohydrates degradation was pronounced in the dark. The topological analysis of gene expression data with the rice genome-scale metabolic model further uncovered that phytohormones, such as abscisate, ethylene, gibberellin, and jasmonate, are the key biomarkers of light-mediated regulation, and subsequent analysis of the associated genes' promoter regions identified several light-specific transcription factors. Finally, the transcriptional control of rice metabolism by red and blue light signals was assessed by integrating the transcriptome and metabolome data with constraint-based modeling. The biological insights gained from this integrative systems biology approach offer several potential applications, such as improving the agronomic traits of food crops and designing light-specific synthetic gene circuits in microbial and mammalian systems.


Assuntos
Perfilação da Expressão Gênica/métodos , Luz , Metaboloma/efeitos da radiação , Metabolômica/métodos , Oryza/efeitos da radiação , Transcriptoma/efeitos da radiação , Algoritmos , Simulação por Computador , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/efeitos da radiação , Genes de Plantas/genética , Metaboloma/genética , Modelos Biológicos , Modelos Genéticos , Oryza/genética , Oryza/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
13.
Biotechnol Bioeng ; 113(3): 651-60, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26369755

RESUMO

In silico model-driven analysis using genome-scale model of metabolism (GEM) has been recognized as a promising method for microbial strain improvement. However, most of the current GEM-based strain design algorithms based on flux balance analysis (FBA) heavily rely on the steady-state and optimality assumptions without considering any regulatory information. Thus, their practical usage is quite limited, especially in its application to secondary metabolites overproduction. In this study, we developed a transcriptomics-based strain optimization tool (tSOT) in order to overcome such limitations by integrating transcriptomic data into GEM. Initially, we evaluated existing algorithms for integrating transcriptomic data into GEM using Streptomyces coelicolor dataset, and identified iMAT algorithm as the only and the best algorithm for characterizing the secondary metabolism of S. coelicolor. Subsequently, we developed tSOT platform where iMAT is adopted to predict the reaction states, and successfully demonstrated its applicability to secondary metabolites overproduction by designing actinorhodin (ACT), a polyketide antibiotic, overproducing strain of S. coelicolor. Mutants overexpressing tSOT targets such as ribulose 5-phosphate 3-epimerase and NADP-dependent malic enzyme showed 2 and 1.8-fold increase in ACT production, thereby validating the tSOT prediction. It is expected that tSOT can be used for solving other metabolic engineering problems which could not be addressed by current strain design algorithms, especially for the secondary metabolite overproductions.


Assuntos
Perfilação da Expressão Gênica , Engenharia Metabólica/métodos , Metabolismo Secundário , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Antraquinonas/metabolismo , Antibacterianos/metabolismo , Biologia Computacional , Redes e Vias Metabólicas/genética , Modelos Biológicos
14.
Biotechnol Bioeng ; 113(9): 1993-2004, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26915092

RESUMO

Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004. © 2016 Wiley Periodicals, Inc.


Assuntos
Candida tropicalis/genética , Candida tropicalis/metabolismo , Ácidos Dicarboxílicos/metabolismo , Genoma Fúngico/genética , Metabolismo dos Lipídeos/genética , Engenharia Metabólica/métodos , Modelos Biológicos , Simulação por Computador , Ácidos Dicarboxílicos/análise , Redes e Vias Metabólicas
15.
J Ind Microbiol Biotechnol ; 42(10): 1401-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254041

RESUMO

Optimizing the overall NADPH turnover is one of the key challenges in various value-added biochemical syntheses. In this work, we first analyzed the NADPH regeneration potentials of common cell factories, including Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis, and Pichia pastoris across multiple environmental conditions and determined E. coli and glycerol as the best microbial chassis and most suitable carbon source, respectively. In addition, we identified optimal cofactor specificity engineering (CSE) enzyme targets, whose cofactors when switched from NAD(H) to NADP(H) improve the overall NADP(H) turnover. Among several enzyme targets, glyceraldehyde-3-phosphate dehydrogenase was recognized as a global candidate since its CSE improved the NADP(H) regeneration under most of the conditions examined. Finally, by analyzing the protein structures of all CSE enzyme targets via homology modeling, we established that the replacement of conserved glutamate or aspartate with serine in the loop region could change the cofactor dependence from NAD(H) to NADP(H).


Assuntos
Bacillus subtilis/metabolismo , Reatores Biológicos/microbiologia , Simulação por Computador , Escherichia coli/metabolismo , NADP/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Bacillus subtilis/enzimologia , Enzimas/química , Enzimas/metabolismo , Escherichia coli/enzimologia , Glicerol/metabolismo , NAD/metabolismo , Oxirredução , Saccharomyces cerevisiae/enzimologia , Serina/metabolismo
16.
Plant Physiol ; 162(4): 2140-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23753178

RESUMO

Rice (Oryza sativa) is one of the major food crops in world agriculture, especially in Asia. However, the possibility of subsequent occurrence of flood and drought is a major constraint to its production. Thus, the unique behavior of rice toward flooding and drought stresses has required special attention to understand its metabolic adaptations. However, despite several decades of research investigations, the cellular metabolism of rice remains largely unclear. In this study, in order to elucidate the physiological characteristics in response to such abiotic stresses, we reconstructed what is to our knowledge the first metabolic/regulatory network model of rice, representing two tissue types: germinating seeds and photorespiring leaves. The phenotypic behavior and metabolic states simulated by the model are highly consistent with our suspension culture experiments as well as previous reports. The in silico simulation results of seed-derived rice cells indicated (1) the characteristic metabolic utilization of glycolysis and ethanolic fermentation based on oxygen availability and (2) the efficient sucrose breakdown through sucrose synthase instead of invertase. Similarly, flux analysis on photorespiring leaf cells elucidated the crucial role of plastid-cytosol and mitochondrion-cytosol malate transporters in recycling the ammonia liberated during photorespiration and in exporting the excess redox cofactors, respectively. The model simulations also unraveled the essential role of mitochondrial respiration during drought stress. In the future, the combination of experimental and in silico analyses can serve as a promising approach to understand the complex metabolism of rice and potentially help in identifying engineering targets for improving its productivity as well as enabling stress tolerance.


Assuntos
Secas , Inundações , Oryza/fisiologia , Células Vegetais/metabolismo , Aminoácidos/biossíntese , Ciclo do Ácido Cítrico , Simulação por Computador , Citosol/metabolismo , Germinação , Glicólise , Redes e Vias Metabólicas , Modelos Biológicos , Oryza/metabolismo , Fosforilação Oxidativa , Oxigênio/metabolismo , Folhas de Planta/citologia , Folhas de Planta/fisiologia , Sementes/fisiologia , Estresse Fisiológico
17.
Microb Cell Fact ; 13: 61, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24774833

RESUMO

BACKGROUND: Thermus thermophilus, an extremely thermophilic bacterium, has been widely recognized as a model organism for studying how microbes can survive and adapt under high temperature environment. However, the thermotolerant mechanisms and cellular metabolism still remains mostly unravelled. Thus, it is highly required to consider systems biological approaches where T. thermophilus metabolic network model can be employed together with high throughput experimental data for elucidating its physiological characteristics under such harsh conditions. RESULTS: We reconstructed a genome-scale metabolic model of T. thermophilus, iTT548, the first ever large-scale network of a thermophilic bacterium, accounting for 548 unique genes, 796 reactions and 635 unique metabolites. Our initial comparative analysis of the model with Escherichia coli has revealed several distinctive metabolic reactions, mainly in amino acid metabolism and carotenoid biosynthesis, producing relevant compounds to retain the cellular membrane for withstanding high temperature. Constraints-based flux analysis was, then, applied to simulate the metabolic state in glucose minimal and amino acid rich media. Remarkably, resulting growth predictions were highly consistent with the experimental observations. The subsequent comparative flux analysis under different environmental conditions highlighted that the cells consumed branched chain amino acids preferably and utilized them directly in the relevant anabolic pathways for the fatty acid synthesis. Finally, gene essentiality study was also conducted via single gene deletion analysis, to identify the conditional essential genes in glucose minimal and complex media. CONCLUSIONS: The reconstructed genome-scale metabolic model elucidates the phenotypes of T. thermophilus, thus allowing us to gain valuable insights into its cellular metabolism through in silico simulations. The information obtained from such analysis would not only shed light on the understanding of physiology of thermophiles but also helps us to devise metabolic engineering strategies to develop T. thermophilus as a thermostable microbial cell factory.


Assuntos
Genoma Bacteriano , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , Aminoácidos/metabolismo , Técnicas de Cultura Celular por Lotes , Biomassa , Redes e Vias Metabólicas/genética
18.
Trends Biotechnol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38548556

RESUMO

Genome-scale metabolic models (GEMs) of Chinese hamster ovary (CHO) cells are valuable for gaining mechanistic understanding of mammalian cell metabolism and cultures. We provide a comprehensive overview of past and present developments of CHO-GEMs and in silico methods within the flux balance analysis (FBA) framework, focusing on their practical utility in rational cell line development and bioprocess improvements. There are many opportunities for further augmenting the model coverage and establishing integrative models that account for different cellular processes and data for future applications. With supportive collaborative efforts by the research community, we envisage that CHO-GEMs will be crucial for the increasingly digitized and dynamically controlled bioprocessing pipelines, especially because they can be successfully deployed in conjunction with artificial intelligence (AI) and systems engineering algorithms.

19.
Appl Microbiol Biotechnol ; 97(5): 1865-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23339015

RESUMO

Pichia yeasts have been recognized as important microbial cell factories in the biotechnological industry. Notably, the Pichia pastoris and Pichia stipitis species have attracted much research interest due to their unique cellular physiology and metabolic capability: P. pastoris has the ability to utilize methanol for cell growth and recombinant protein production, while P. stipitis is capable of assimilating xylose to produce ethanol under oxygen-limited conditions. To harness these characteristics for biotechnological applications, it is highly required to characterize their metabolic behavior. Recently, following the genome sequencing of these two Pichia species, genome-scale metabolic networks have been reconstructed to model the yeasts' metabolism from a systems perspective. To date, there are three genome-scale models available for each of P. pastoris and P. stipitis. In this mini-review, we provide an overview of the models, discuss certain limitations of previous studies, and propose potential future works that can be conducted to better understand and engineer Pichia yeasts for industrial applications.


Assuntos
Redes e Vias Metabólicas , Pichia/genética , Pichia/metabolismo , Biotecnologia/métodos , Biologia Computacional , Simulação por Computador , Genoma Fúngico , Microbiologia Industrial , Modelos Biológicos , Biologia de Sistemas
20.
Comput Struct Biotechnol J ; 21: 3736-3745, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547082

RESUMO

The biomass equation is a critical component in genome-scale metabolic models (GEMs): it is used as the de facto objective function in flux balance analysis (FBA). This equation accounts for the quantities of all known biomass precursors that are required for cell growth based on the macromolecular and monomer compositions measured at certain conditions. However, it is often reported that the macromolecular composition of cells could change across different environmental conditions and thus the use of the same single biomass equation in FBA, under multiple conditions, is questionable. Herein, we first investigated the qualitative and quantitative variations of macromolecular compositions of three representative host organisms, Escherichia coli, Saccharomyces cerevisiae and Cricetulus griseus, across different environmental/genetic variations. While macromolecular building blocks such as RNA, protein, and lipid composition vary notably, changes in fundamental biomass monomer units such as nucleotides and amino acids are not appreciable. We also observed that flux predictions through FBA is quite sensitive to macromolecular compositions but not the monomer compositions. Based on these observations, we propose ensemble representations of biomass equation in FBA to account for the natural variation of cellular constituents. Such ensemble representations of biomass better predicted the flux through anabolic reactions as it allows for the flexibility in the biosynthetic demands of the cells. The current study clearly highlights that certain component of the biomass equation indeed vary across different conditions, and the ensemble representation of biomass equation in FBA by accounting for such natural variations could avoid inaccuracies that may arise from in silico simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA