Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Int Ophthalmol ; 44(1): 361, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39215853

RESUMO

PURPOSE: To describe the prevalence and antibiotic resistance profiles of Pseudomonas aeruginosa isolated from the Asia Cornea Society Infectious Keratitis Study (ACSIKS). METHODS: All bacterial isolates from ACSIKS underwent repeat microbiological identification in a central repository in Singapore. Minimum inhibitory concentration (MIC) determination was conducted for isolates of P. aeruginosa against thirteen antibiotics from 6 different classes, and categorized based on Clinical Laboratory Standard Institutes' reference ranges. The percentage rates of resistance (non-susceptibility) to each antibiotic included isolates of both intermediate and complete resistance. Multi-drug resistance (MDR) was defined as non-susceptibility to at least one agent in three or more antimicrobial classes. RESULTS: Of the 1493 unique bacterial specimens obtained from ACSIKS, 319 isolates were of P. aeruginosa. The majority of isolates were from centers in India (n = 118, 37%), Singapore (n = 90, 28.2%), Hong Kong (n = 31, 9.7%) and Thailand (n = 30, 9.4%). The cumulative antibiotic resistance rate was the greatest for polymyxin B (100%), ciprofloxacin (17.6%) and moxifloxacin (16.9%), and lowest for cefepime (11.6%) and amikacin (13.5%). Isolates from India demonstrated the highest antibiotic resistance rates of all the centers, and included moxifloxacin (47.5%) and ciprofloxacin (39.8%). Forty-eight of the 59 MDR isolates also originated from India. Antibiotic resistance rates were significantly lower in the other ACSIKS centers, and were typically less than 10%. CONCLUSIONS: The antibiotic resistance profiles of P. aeruginosa varied between different countries. While it was low for most countries, substantial antibiotic resistance and a significant number of multi-drug resistant isolates were noted in the centers from India.


Assuntos
Antibacterianos , Infecções Oculares Bacterianas , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Humanos , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/epidemiologia , Infecções Oculares Bacterianas/tratamento farmacológico , Antibacterianos/farmacologia , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Sociedades Médicas , Masculino , Feminino , Prevalência , Farmacorresistência Bacteriana , Úlcera da Córnea/microbiologia , Úlcera da Córnea/epidemiologia , Úlcera da Córnea/tratamento farmacológico , Ceratite/microbiologia , Ceratite/epidemiologia , Ceratite/tratamento farmacológico
2.
Infect Immun ; 90(8): e0006122, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35913171

RESUMO

Pseudomonas aeruginosa is generally believed to establish biofilm-associated infections under the regulation of the secondary messenger c-di-GMP. To evaluate P. aeruginosa biofilm physiology during ocular infections, comparative transcriptomic analysis was performed on wild-type P. aeruginosa PAO1, a ΔwspF mutant strain (high c-di-GMP levels), and a plac-yhjH-containing strain (low c-di-GMP levels) from mouse corneal infection, as well as in vitro biofilm and planktonic cultures. The c-di-GMP content in P. aeruginosa during corneal infection was monitored using a fluorescent c-di-GMP reporter strain. Biofilm-related genes were induced in in vivo PAO1 compared to in vitro planktonic bacteria. Several diguanylate cyclases and phosphodiesterases were commonly regulated in in vivo PAO1 and in vitro biofilm compared to in vitro planktonic bacteria. Several exopolysaccharide genes and motility genes were induced and downregulated, respectively, in in vivo PAO1 and the in vivo ΔwspF mutant compared to the in vivo plac-yhjH-containing strain. Elevation of c-di-GMP levels in P. aeruginosa began as early as 2 h postinfection. The ΔwspF mutant was less susceptible to host clearance than the plac-yhjH-containing strain and could suppress host immune responses. The type III secretion system (T3SS) was induced in in vivo PAO1 compared to in vitro biofilm bacteria. A ΔwspF mutant with a defective T3SS was more susceptible to host clearance than a ΔwspF mutant with a functional T3SS. Our study suggests that elevated intracellular c-di-GMP levels and T3SS activity in P. aeruginosa are necessary for establishment of infection and modulation of host immune responses in mouse cornea.


Assuntos
Pseudomonas aeruginosa , Sistemas de Secreção Tipo III , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Camundongos , Pseudomonas aeruginosa/genética , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
3.
J Nanobiotechnology ; 20(1): 375, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35953826

RESUMO

Given the spasmodic increment in antimicrobial resistance (AMR), world is on the verge of "post-antibiotic era". It is anticipated that current SARS-CoV2 pandemic would worsen the situation in future, mainly due to the lack of new/next generation of antimicrobials. In this context, nanoscale materials with antimicrobial potential have a great promise to treat deadly pathogens. These functional materials are uniquely positioned to effectively interfere with the bacterial systems and augment biofilm penetration. Most importantly, the core substance, surface chemistry, shape, and size of nanomaterials define their efficacy while avoiding the development of AMR. Here, we review the mechanisms of AMR and emerging applications of nanoscale functional materials as an excellent substitute for conventional antibiotics. We discuss the potential, promises, challenges and prospects of nanobiotics to combat AMR.


Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana , Humanos , RNA Viral , SARS-CoV-2
4.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209228

RESUMO

The high mortality associated with invasive fungal infections, narrow spectrum of available antifungals, and increasing evolution of antifungal resistance necessitate the development of alternative therapies. Host defense peptides are regarded as the first line of defense against microbial invasion in both vertebrates and invertebrates. In this work, we investigated the effectiveness of four naturally occurring pore-forming antimicrobial peptides (melittin, magainin 2, cecropin A, and mastoparan B) against a panel of clinically relevant pathogens, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. We present data on the antifungal activities of the four pore-forming peptides, assessed with descriptive statistics, and their cytocompatibility with cultured human cells. Among the four peptides, mastoparan B (MB) displayed potent antifungal activity, whereas cecropin A was the least potent. We show that MB susceptibility of phylogenetically distant non-candida albicans can vary and be described by different intrinsic physicochemical parameters of pore-forming α-helical peptides. These findings have potential therapeutic implications for the design and development of safe antifungal peptide-based drugs.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Proteica , Análise Espectral , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019187

RESUMO

Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM). International Diabetic Federations (IDF) estimates up to 629 million people with DM by the year 2045 worldwide. Nearly 50% of DM patients will show evidence of diabetic-related eye problems. Therapeutic interventions for DR are limited and mostly involve surgical intervention at the late-stages of the disease. The lack of early-stage diagnostic tools and therapies, especially in DR, demands a better understanding of the biological processes involved in the etiology of disease progression. The recent surge in literature associated with NOD-like receptors (NLRs) has gained massive attraction due to their involvement in mediating the innate immune response and perpetuating inflammatory pathways, a central phenomenon found in the pathogenesis of ocular diseases including DR. The NLR family of receptors are expressed in different eye tissues during pathological conditions suggesting their potential roles in dry eye, ocular infection, retinal ischemia, cataract, glaucoma, age-related macular degeneration (AMD), diabetic macular edema (DME) and DR. Our group is interested in studying the critical early components involved in the immune cell infiltration and inflammatory pathways involved in the progression of DR. Recently, we reported that NLRP3 inflammasome might play a pivotal role in the pathogenesis of DR. This comprehensive review summarizes the findings of NLRs expression in the ocular tissues with special emphasis on its presence in the retinal microglia and DR pathogenesis.


Assuntos
Retinopatia Diabética/imunologia , Glaucoma/imunologia , Inflamassomos/imunologia , Degeneração Macular/imunologia , Edema Macular/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteínas NLR/imunologia , Olho/imunologia , Humanos , Imunidade Inata
6.
Int J Mol Sci ; 20(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635374

RESUMO

Aloe vera (AV) and tetracycline hydrochloride (TCH) exhibit significant properties such as anti-inflammatory, antioxidant and anti-bacterial activities to facilitate skin tissue engineering. The present study aims to develop poly-ε-caprolactone (PCL)/ AV containing curcumin (CUR), and TCH loaded hybrid nanofibrous scaffolds to validate the synergistic effect on the fibroblast proliferation and antimicrobial activity against Gram-positive and Gram-negative bacteria for wound healing. PCL/AV, PCL/CUR, PCL/AV/CUR and PCL/AV/TCH hybrid nanofibrous mats were fabricated using an electrospinning technique and were characterized for surface morphology, the successful incorporation of active compounds, hydrophilicity and the mechanical property of nanofibers. SEM revealed that there was a decrease in the fiber diameter (ranging from 360 to 770 nm) upon the addition of AV, CUR and TCH in PCL nanofibers, which were randomly oriented with bead free morphology. FTIR spectra of various electrospun samples confirmed the successful incorporation of AV, CUR and TCH into the PCL nanofibers. The fabricated nanofibrous scaffolds possessed mechanical properties within the range of human skin. The biocompatibility of electrospun nanofibrous scaffolds were evaluated on primary human dermal fibroblasts (hDF) by MTS assay, CMFDA, Sirius red and F-actin stainings. The results showed that the fabricated PCL/AV/CUR and PCL/AV/TCH nanofibrous scaffolds were non-toxic and had the potential for wound healing applications. The disc diffusion assay confirmed that the electrospun nanofibrous scaffolds possessed antibacterial activity and provided an effective wound dressing for skin tissue engineering.


Assuntos
Aloe/química , Materiais Biocompatíveis/química , Nanofibras , Pele , Tetraciclina/administração & dosagem , Engenharia Tecidual , Alicerces Teciduais , Antibacterianos/administração & dosagem , Biomarcadores , Proliferação de Células , Sobrevivência Celular , Liberação Controlada de Fármacos , Fibroblastos , Humanos , Teste de Materiais , Fenômenos Mecânicos , Testes de Sensibilidade Microbiana , Nanofibras/química , Nanofibras/ultraestrutura , Análise Espectral , Tetraciclina/química , Alicerces Teciduais/química , Cicatrização
7.
Biochem J ; 474(10): 1705-1725, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28381645

RESUMO

Corneal stromal dystrophies are a group of genetic disorders that may be caused by mutations in the transforming growth factor ß-induced (TGFBI) gene which results in the aggregation and deposition of mutant proteins in various layers of the cornea. The type of amino acid substitution dictates the age of onset, anatomical location of the deposits, morphological features of deposits (amyloid, amorphous powder or a mixture of both forms) and the severity of disease presentation. It has been suggested that abnormal turnover and aberrant proteolytic processing of the mutant proteins result in the accumulation of insoluble protein deposits. Using mass spectrometry, we identified increased abundance of a 32 amino acid-long peptide in the 4th fasciclin-like domain-1 (FAS-1) domain of transforming growth factor ß-induced protein (amino acid 611-642) in the amyloid deposits of the patients with lattice corneal dystrophies (LCD). In vitro studies demonstrated that the peptide readily formed amyloid fibrils under physiological conditions. Clinically relevant substitution (M619K, N622K, N622H, G623R and H626R) of the truncated peptide resulted in profound changes in the kinetics of amyloid formation, thermal stability of the amyloid fibrils and cytotoxicity of fibrillar aggregates, depending on the position and the type of the amino acid substitution. The results suggest that reduction in the overall net charge, nature and position of cationic residue substitution determines the amyloid aggregation propensity and thermal stability of amyloid fibrils.


Assuntos
Córnea/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Proteínas do Olho/metabolismo , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima , Substituição de Aminoácidos , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Amiloide/ultraestrutura , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Córnea/citologia , Córnea/patologia , Córnea/ultraestrutura , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/patologia , Proteínas do Olho/química , Proteínas do Olho/genética , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1/química , Fator de Crescimento Transformador beta1/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-28784676

RESUMO

The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 µg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Candida albicans/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Alilamina/farmacologia , Animais , Aziridinas/farmacologia , Candidíase/tratamento farmacológico , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Humanos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Testes de Sensibilidade Microbiana , Polietilenoimina/farmacologia , Polilisina/farmacologia , Polímeros/química , Infecções por Pseudomonas/tratamento farmacológico , Coelhos , Infecções Estafilocócicas/tratamento farmacológico
9.
Biochim Biophys Acta ; 1848(4): 1023-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25582665

RESUMO

Membrane active antimicrobials are a promising new generation of antibiotics that hold the potential to avert antibiotic resistance. However, poor understanding of the action mechanism and the lack of general design principles have impeded their development. Here we extend the concept of fragment based drug design and propose a pharmacophore model based on first principles for the design of membrane active antimicrobials against Gram positive pathogens. Elaborating on a natural xanthone-based hydrophobic scaffold, two derivatives of the pharmacophore model are proposed, and these demonstrate excellent antimicrobial activity. Rigorous molecular dynamics simulations combined with biophysical experiments suggest a three-step mechanism of action (absorption-translocation-disruption) which allows us to identify key factors for the practical optimization of each fragment of the pharmacophore. Moreover, the model matches the structures of several membrane active antimicrobials which are currently in clinical trials. Our model provides a novel and rational approach for the design of bactericidal molecules that target the bacterial membrane.


Assuntos
Anti-Infecciosos/farmacologia , Membrana Celular/efeitos dos fármacos , Desenho de Fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Xantonas/farmacologia , Animais , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Cultivadas , Córnea/citologia , Córnea/efeitos dos fármacos , Córnea/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fluoresceínas/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Coelhos , Infecções Estafilocócicas/virologia , Xantonas/química
10.
Small ; 12(35): 4782-4806, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27482950

RESUMO

The development of hybrid biomaterials has been attracting great attention in the design of materials for biomedicine. The nanosized level of inorganic and organic or even bioactive components can be combined into a single material by this approach, which has created entirely new advanced compositions with truly unique properties for drug delivery. The recent advances in using hybrid nanovehicles as remotely controlled therapeutic delivery carriers are summarized with respect to different nanostructures, including hybrid host-guest nanoconjugates, micelles, nanogels, core-shell nanoparticles, liposomes, mesoporous silica, and hollow nanoconstructions. In addition, the controlled release of guest molecules from these hybrid nanovehicles in response to various remote stimuli such as alternating magnetic field, near infrared, or ultrasound triggers is further summarized to introduce the different mechanisms of remotely triggered release behavior. Through proper chemical functionalization, the hybrid nanovehicle system can be further endowed with many new properties toward specific biomedical applications.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Liberação Controlada de Fármacos , Lipossomos/química , Campos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA