Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005125

RESUMO

The phase equilibria of the Ag-Al-Au ternary system and the solid-state reaction couple for the Au-xAg/Al system were investigated isothermally at 450 °C. By investigating the Ag-Al-Au ternary system and its isothermal section, this study aims to provide a clearer understanding of the phase stability and interfacial reactions between different phases. This information is crucial for designing materials and processes in electronic packaging, with the potential to reduce costs and improve reliability. There were seven single-phase regions, thirteen two-phase regions, and six three-phase regions, with no ternary intermetallic compound (IMC) formed in the isothermal section of the Ag-Al-Au ternary system. When the Au-25 wt.% Ag/Al couple was aged at 450 °C for 240-1500 h, the AuAl2, Au2Al, and Au4Al phases formed at the interface. When the Ag contents increased to 50 and 75 wt.%, the Ag2Al, AuAl2, and Au4Al phases formed at the interface. When the aging time increased from 240 h to 1500 h, the total IMC thickness in all Au-xAg/Al couples became thicker, but the types of IMCs formed at the interface did not change. The total IMC thickness also increased with the increase in the Ag content. When the Ag content was greater than 25 wt.%, the Au2Al phase was converted into the Ag2Al phase. The IMC growth mechanism in all of the couples followed a reaction-controlled process.

2.
Materials (Basel) ; 15(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35591433

RESUMO

In recent years, high-entropy alloys (HEAs) that contain fine grains of intermetallic compounds (IMCs) have gained increasing attention as they have been shown to exhibit both high mechanical strength and strong corrosion resistance. One such class of HEAs is that of CuFeTiZrNi alloys. In this study, we have investigated the effect of increasing Ni content on the microstructure, hardness, and corrosion resistance of the CuFeTiZrNix alloys (where x = 0.1, 0.3, 0.5, 0.8, 1.0 in a molar ratio). The alloys used in this study were prepared in an arc melting furnace and then annealed at 900 °C. First-principles calculations of the bulk modulus were also performed for each alloy. The results revealed that increasing the Ni content had several effects. Firstly, the microstructure of the CuFeTiZrNix alloys changed from B2_BCC and Laves_C14 in the CuFeTiZrNi0.1 and CuFeTiZrNi0.3 alloys to FCC, B2_BCC, and Laves_C14 in the CuFeTiZrNi0.5 alloys; and to FCC, B2_BCC, Cu51Zr14, and Laves_C14 in the CuFeTiZrNi0.8 and CuFeTiZrNi1.0 alloys. Secondly, IMCs arising from a combination of the refractory elements (Ti and Zr) and atomic size differences were found in the interdendritic region. Thirdly, as the Ni content in the CuFeTiZrNix alloys increased, the hardness decreased, but the corrosion resistance increased.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA