RESUMO
Humans and other organisms are exposed to multi-chemical mixtures including commonly found carcinogens such as polycyclic aromatic hydrocarbons (PAHs) and heavy metal/loids. The joint effects of these chemicals as beyond the binary mixtures have not been well characterised. In this study, we evaluated the combined genotoxicity of mixtures of PAHs and heavy metal/loids containing benzo(a)pyrene (B[a]P), naphthalene (Nap), phenanthrene (Phe), pyrene (Pyr), arsenic (As), cadmium (Cd) and chromium (Cr) using in vitro micronucleus (MN) test in HepG2 cells. The induction of aryl hydrocarbon receptor (AhR) by single and mixed PAHs was also measured. The results indicated that individual and mixed Nap, Phe and Pyr did not induce significant MN frequencies. PAHs mixture containing B[a]P and B[a]P alone caused significant but similar level of MN frequencies. The same pattern was found in their AhR induction. Individual metal/loids induced significant cytostasis and MN formation of which Cd was found the most potent inducer. Mixture of metal/loids caused higher frequency of MN suggesting a possible additive effect among metal/loids. In addition, binary mixture of metal/loids and B[a]P, namely As/B[a]P, Cd/B[a]P and Cr/B[a]P, increased MN formation. Mixture of Cd and B[a]P induced the highest level of MN. Exposure of cells to the mixture containing B[a]P and Cd/Cr/As at lower concentration (0.25 µM) resulted in significant MN frequency, the level of which was equal to that by Cd/B[a]P at 1.0 µM. The results of the study suggested that an additive effect may exist between PAHs and heavy metal/loids in a compound- and concentration-dependent manner. The compounds with highest potencies of genotoxicity in the mixture seem dominant as driving sources in the final combined genotoxicity of PAHs and heavy metal/loids.
Assuntos
Metais Pesados/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Células Hep G2 , Humanos , Receptores de Hidrocarboneto Arílico/efeitos dos fármacosRESUMO
Globally, we are failing to meet numerous nutritional, health, and environmental targets linked to food. Defining food composition in its full chemical and quantitative diversity is central to data-driven decision making for supporting nutrition and sustainable diets. "Foodomics"-the application of omics-technology to characterize and quantify biomolecules to improve wellbeing-has the potential to comprehensively elucidate what is in food, how this composition varies across the food system, and how diet composition as an ensemble of foods guides outcomes for nutrition, health, and sustainability. Here, we outline: (i) challenges of evaluating food composition; (ii) state-of-the-art omics technology and innovations for the analysis of food; and (iii) application of foodomics as a complementary data-driven approach to revolutionize nutrition and sustainable diets. Featuring efforts of the Periodic Table of Food Initiative, a participatory effort to create a globally shared foodomics platform, we conclude with recommendations to accelerate foodomics in ways that strengthen the capacity of scientists and benefit all people.
RESUMO
This article gives an overview of a range of persistent organic pollutant chemical levels in shellfish (Batissa violacea and Anadara antiquata) species and eel (Gymnothorax flavimarginatus) from Fiji. As there is limited data in published literature to date, this paper reports first data on a range of persistent organic pollutants and highlights the more prominent POP chemicals present in marine biota in Fiji. A significant number of POP chemicals were detected (e.g. 17 PCDD/PCDF, 12dl-PCBs, organochlorine pesticides and brominated flame retardants), the concentrations found were generally low (e.g. parts per billion level). The low levels of contamination are indicative of a low input from long range and short-range transport as well as few local point sources. Also concentrations of POPs in eel and shellfish from Fiji are low in comparison to wild species in other regions and are within acceptable limits for POP chemicals in fish and fishery products set by the European Union. It describes also results of early studies on basic POPs levels in shellfish in several Pacific Island Countries, which generally show relatively low levels.