Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 70(6): 1077-1089, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33693838

RESUMO

The family Pteropodidae (Old World fruit bats) comprises $>$200 species distributed across the Old World tropics and subtropics. Most pteropodids feed on fruit, suggesting an early origin of frugivory, although several lineages have shifted to nectar-based diets. Pteropodids are of exceptional conservation concern with $>$50% of species considered threatened, yet the systematics of this group has long been debated, with uncertainty surrounding early splits attributed to an ancient rapid diversification. Resolving the relationships among the main pteropodid lineages is essential if we are to fully understand their evolutionary distinctiveness, and the extent to which these bats have transitioned to nectar-feeding. Here we generated orthologous sequences for $>$1400 nuclear protein-coding genes (2.8 million base pairs) across 114 species from 43 genera of Old World fruit bats (57% and 96% of extant species- and genus-level diversity, respectively), and combined phylogenomic inference with filtering by information content to resolve systematic relationships among the major lineages. Concatenation and coalescent-based methods recovered three distinct backbone topologies that were not able to be reconciled by filtering via phylogenetic information content. Concordance analysis and gene genealogy interrogation show that one topology is consistently the best supported, and that observed phylogenetic conflicts arise from both gene tree error and deep incomplete lineage sorting. In addition to resolving long-standing inconsistencies in the reported relationships among major lineages, we show that Old World fruit bats have likely undergone at least seven independent dietary transitions from frugivory to nectarivory. Finally, we use this phylogeny to identify and describe one new genus. [Chiroptera; coalescence; concordance; incomplete lineage sorting; nectar feeder; species tree; target enrichment.].


Assuntos
Quirópteros , Animais , Evolução Biológica , Quirópteros/genética , Evolução Molecular , Filogenia
2.
Heredity (Edinb) ; 122(2): 150-171, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29795180

RESUMO

North Africa is now recognized as a major area for the emergence and dispersal of anatomically modern humans from at least 315 kya. The Mediterranean Basin is thus particularly suited to study the role of climate versus human-mediated changes on the evolutionary history of species. The Algerian mouse (Mus spretus Lataste) is an endemic species from this basin, with its distribution restricted to North Africa (from Libya to Morocco), Iberian Peninsula and South of France. A rich paleontological record of M. spretus exists in North Africa, suggesting hypotheses concerning colonization pathways, and the demographic and morphologic history of this species. Here we combined genetic (3 mitochondrial DNA loci and 18 microsatellites) and climatic niche modeling data to infer the evolutionary history of the Algerian mouse. We collected 646 new individuals in 51 localities. Our results are consistent with an anthropogenic translocation of the Algerian mouse from North Africa to the Iberian Peninsula via Neolithic navigators, probably from the Tingitane Peninsula. Once arrived in Spain, suitable climatic conditions would then have favored the dispersion of the Algerian mice to France. The morphological differentiation observed between Spanish, French and North African populations could be explained by a founder effect and possibly local adaptation. This article helps to better understand the role of climate versus human-mediated changes on the evolutionary history of mammal species in the Mediterranean Basin.


Assuntos
Migração Animal , Camundongos/crescimento & desenvolvimento , África do Norte , Animais , Clima , DNA Mitocondrial/genética , Europa (Continente) , Camundongos/classificação , Camundongos/genética , Camundongos/fisiologia , Repetições de Microssatélites , Filogenia , Espanha
3.
Artigo em Inglês | MEDLINE | ID: mdl-38775074

RESUMO

Background: The control and prevention of rodent-borne diseases are mainly based on our knowledge of ecology and the infectious status of their reservoir hosts. This study aimed to evaluate the prevalence of Francisella tularensis, Yersinia pestis, and arenavirus infections in small mammals and to assess the potential of disease occurrence in East Azerbaijan, northwest of Iran, in 2017 and 2018. Methods: Spleen and lung samples were obtained from all trapped small mammals. The real-time quantitative PCR (qPCR) method was used to detect nucleic acid sequences of F. tularensis, Y. pestis, and arenaviruses. Serum samples were tested for antibodies indicating the host response to F. tularensis and Y. pestis infections using the standard tube agglutination test and enzyme-linked immunosorbent assay (ELISA), respectively. Results: A total of 205 rodents, four Eulipotyphla, and one carnivore were captured. The most common rodent species captured (123 of 205 rodents, 60%) belonged to the genus Meriones (mainly Persian jird, Meriones persicus). In total, 317 fleas were removed from trapped animals. Flea species belonged to Xenopsylla buxtoni, Xenopsylla nuttalli, Stenoponia tripectinata, Paraceras melis, Ctenophthalmus rettigi smiti, Rhadinopsylla bivirgis, Paradoxopsyllus grenieri, and Nosopsyllus iranus. Using the qPCR tests, five spleen samples from M. persicus were positive for F. tularensis. The qPCR tests were negative for the detection of Y. pestis and arenaviruses. Finally, all serum samples tested were negative for antibodies against Y. pestis and F. tularensis. Conclusions: F. tularensis was the only zoonotic agent detected in rodents captured in East Azerbaijan. However, the diversity of trapped rodents and fleas provides the potential for the spread of various rodent-borne viral and bacterial diseases in the studied areas.

4.
Sci Rep ; 12(1): 10531, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732784

RESUMO

Untangling the factors of morphological evolution has long held a central role in the study of evolutionary biology. Extant speciose clades that have only recently diverged are ideal study subjects, as they allow the examination of rapid morphological variation in a phylogenetic context, providing insights into a clade's evolution. Here, we focus on skull morphological variability in a widely distributed shrew species complex, the Crocidura poensis species complex. The relative effects of taxonomy, size, geography, climate and habitat on skull form were tested, as well as the presence of a phylogenetic signal. Taxonomy was the best predictor of skull size and shape, but surprisingly both size and shape exhibited no significant phylogenetic signal. This paper describes one of the few cases within a mammal clade where morphological evolution does not match the phylogeny. The second strongest predictor for shape variation was size, emphasizing that allometry can represent an easily accessed source of morphological variability within complexes of cryptic species. Taking into account species relatedness, habitat preferences, geographical distribution and differences in skull form, our results lean in favor of a parapatric speciation model within this complex of species, where divergence occurred along an ecological gradient, rather than a geographic barrier.


Assuntos
Ecossistema , Musaranhos , Animais , Clima , Humanos , Filogenia , Crânio/anatomia & histologia
5.
PLoS One ; 17(2): e0263045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35120158

RESUMO

Madagascar is a large island to the south-east of Africa and in many ways continental in size and ecological complexity. Here we aim to define how skull morphology of an endemic and monophyletic clade of rodents (sub-family Nesomyinae), that show considerable morphological variation, have evolved and how their disparity is characterized in context of the geographical and ecological complexity of the island. We performed a two-dimensional geometric morphometric analysis on 370 dorsal and 399 ventral skull images of 19 species (comprising all nine extant endemic genera) and tested the influence of three ecological parameters (climate, locomotor habitat and nychthemeral cycle) in a phylogenetic context on size and shape. The results indicate that skull shape appears to importantly reflect phylogeny, whereas skull size does not carry a significant phylogenetic signal. Skull shape is significantly influenced by climate while, skull size is not impacted by any of the ecological factors tested, which is controversial to expectations in an insular context. In conclusion, Nesomyinae must have evolved under unusual types of local constraints, preventing this radiation from demonstrating strong ecological release.


Assuntos
Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Migração Animal , Animais , Evolução Biológica , Clima , Ecologia , Geografia , Cabeça , Madagáscar , Muridae , Filogenia , Especificidade da Espécie
6.
C R Biol ; 341(1): 28-42, 2018 Jan.
Artigo em Francês | MEDLINE | ID: mdl-29229287

RESUMO

In North Africa, the rodents of the species complex Meriones shawii-grandis have a considerable ecological, economic and epidemiological importance. Until now, the systematics of these species was subject to discussion due to the presence of populations displaying high morphological variability. By means of an approach of traditional morphometrics based on cranial distances and by using the method of the log shape-ratio, we attempt to characterize morphologically these two taxa. The results show significant differences in size and shape between the specimens of Morocco, on the one hand, and those of Algeria and Tunisia, on the other hand. The samples of Morocco that have been molecularly typed and attributed to M. grandis have larger tooth rows and narrower skulls, as well as relatively small tympanic bullae. On the other hand, those of Algeria and Tunisia assigned to M. shawii are characterized by small tooth rows and wide skulls with well-developed tympanic bullae. The morphological distance is relatively strong between both clades (79.5%), which corresponds to the molecular distance. However, the discriminant analysis performed after molecularly-typed specimens allows the correct classification of only 91.8% of the individuals.


Assuntos
Gerbillinae/anatomia & histologia , Cabeça/anatomia & histologia , Argélia , Animais , Feminino , Masculino , Marrocos , Caracteres Sexuais , Crânio/anatomia & histologia , Dente/anatomia & histologia , Desgaste dos Dentes , Tunísia
7.
Ecol Evol ; 8(24): 12803-12820, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619584

RESUMO

The Gambian epauletted fruit bat (Epomophorus gambianus) is an abundant species that roosts in both urban and rural settings. The possible role of E. gambianus as a reservoir host of zoonotic diseases underlines the need to better understand the species movement patterns. So far, neither observational nor phylogenetic studies have identified the dispersal range or behavior of this species. Comparative analyses of mitochondrial and nuclear markers from 20 localities across the known distribution of E. gambianus showed population panmixia, except for the populations in Ethiopia and southern Ghana (Accra and Ve-Golokwati). The Ethiopian population may be ancestral and is highly divergent to the species across the rest of its range, possibly reflecting isolation of an ancient colonization along an east-west axis. Mitochondrial haplotypes in the Accra population display a strong signature of a past bottleneck event; evidence of either an ancient or recent bottleneck using microsatellite data, however, was not detected. Demographic analyses identified population expansion in most of the colonies, except in the female line of descent in the Accra population. The molecular analyses of the colonies from Ethiopia and southern Ghana show gender dispersal bias, with the mitochondrial DNA fixation values over ten times those of the nuclear markers. These findings indicate free mixing of the species across great distances, which should inform future epidemiological studies.

8.
BMC Res Notes ; 10(1): 663, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191239

RESUMO

OBJECTIVE: The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. RESULTS: We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.


Assuntos
Ecossistema , Raposas/genética , Loci Gênicos/genética , Camada de Gelo , Repetições de Microssatélites/genética , Animais , Regiões Árticas , Canadá , Genética Populacional , Reação em Cadeia da Polimerase , Dinâmica Populacional
9.
Integr Zool ; 10(6): 505-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26331855

RESUMO

The commensal rodent Mastomys natalensis is the natural reservoir of Lassa arenavirus (LASV), which causes hemorrhagic fever in West Africa. To study a possible effect of the virus on phenotypic and genotypic variation of its persistently infected host, we compared LASV-positive and non-infected wild-caught M. natalensis. The LASV effects on the phenotypic variation were explored using standard external morphometric measurements, geometric morphometric analyses of the cranial size and shape, and brain case volume. The genetic variability of M. natalensis specimens was assessed using 9 polymorphic microsatellite markers. Independent of sex and age, LASV-infected animals had smaller external body measurements, reproductive organs, skull size and brain case volume. Cranial shape differences between the 2 groups are represented by a lateral constriction of the entire skull. The genetic variability revealed consanguinity only among the LASV-positive rodents. We hypothesize that growth impairment may result in a selective disadvantage for LASV-infected M. natalensis, leading to a preferably commensal lifestyle in areas where the LAVS is endemic and, thereby, increasing the risk of LASV transmission to humans.


Assuntos
Febre Lassa/veterinária , Vírus Lassa/patogenicidade , Murinae/genética , Murinae/virologia , Animais , Evolução Biológica , Tamanho Corporal , Encéfalo/anatomia & histologia , Reservatórios de Doenças/veterinária , Reservatórios de Doenças/virologia , Feminino , Fluxo Gênico , Genitália/anatomia & histologia , Guiné , Masculino , Repetições de Microssatélites , Murinae/anatomia & histologia , Fenótipo , Doenças dos Roedores/virologia , Crânio/anatomia & histologia
10.
Viruses ; 6(5): 1897-910, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24784569

RESUMO

The recent discovery of genetically distinct hantaviruses in multiple species of shrews and moles prompted a further exploration of their host diversification by analyzing frozen, ethanol-fixed and RNAlater®-preserved archival tissues and fecal samples from 533 bats (representing seven families, 28 genera and 53 species in the order Chiroptera), captured in Asia, Africa and the Americas in 1981-2012, using RT-PCR. Hantavirus RNA was detected in Pomona roundleaf bats (Hipposideros pomona) (family Hipposideridae), captured in Vietnam in 1997 and 1999, and in banana pipistrelles (Neoromicia nanus) (family Vespertilionidae), captured in Côte d'Ivoire in 2011. Phylogenetic analysis, based on the full-length S- and partial M- and L-segment sequences using maximum likelihood and Bayesian methods, demonstrated that the newfound hantaviruses formed highly divergent lineages, comprising other recently recognized bat-borne hantaviruses in Sierra Leone and China. The detection of bat-associated hantaviruses opens a new era in hantavirology and provides insights into their evolutionary origins.


Assuntos
Quirópteros/virologia , Variação Genética , Orthohantavírus/classificação , Orthohantavírus/genética , Filogenia , Animais , Análise por Conglomerados , Côte d'Ivoire , Orthohantavírus/isolamento & purificação , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vietnã
11.
Infect Genet Evol ; 20: 118-23, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23994121

RESUMO

Elucidation of the molecular phylogeny of shrew-borne hantaviruses in sub-Saharan Africa has been hampered by the lack of full-length viral genomes. In this report, we present the complete genome analysis of a newfound hantavirus, designated Bowé virus, detected in ethanol-fixed intercostal muscle of a Doucet's musk shrew (Crocidura douceti), captured in southwestern Guinea in February 2012. Full-length amino acid sequence comparison of the S-, M- and L-segment gene products revealed that Bowé virus differed by 24.1-53.4%, 17.0-59.9% and 14.6-39.7%, respectively, from all other representative rodent-, shrew- and mole-borne hantaviruses. Phylogenetic analysis, using maximum-likelihood and Bayesian methods, under the GTR+I+Γ model of evolution, showed that Bowé virus shared a common ancestry with Tanganya virus, a hantavirus detected in the Therese's shrew (Crocidura theresae) in Guinea. Whole genome analysis of many more hantaviruses from sub-Saharan Africa are needed to better clarify how the radiation of African shrews might have contributed to the phylogeography of hantaviruses.


Assuntos
Infecções por Hantavirus/veterinária , Orthohantavírus/classificação , Orthohantavírus/genética , Musaranhos/virologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Genoma Viral/genética , Guiné , Orthohantavírus/isolamento & purificação , Infecções por Hantavirus/virologia , Músculos Intercostais/virologia , Filogenia , Filogeografia , RNA Viral/genética , Análise de Sequência de DNA
12.
PLoS One ; 7(5): e37068, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615894

RESUMO

Environmental changes have been shown to play an important role in the emergence of new human diseases of zoonotic origin. The contribution of social factors to their spread, especially conflicts followed by mass movement of populations, has not been extensively investigated. Here we reveal the effects of civil war on the phylogeography of a zoonotic emerging infectious disease by concomitantly studying the population structure, evolution and demography of Lassa virus and its natural reservoir, the rodent Mastomys natalensis, in Guinea, West Africa. Analysis of nucleoprotein gene sequences enabled us to reconstruct the evolutionary history of Lassa virus, which appeared 750 to 900 years ago in Nigeria and only recently spread across western Africa (170 years ago). Bayesian demographic inferences revealed that both the host and the virus populations have gone recently through severe genetic bottlenecks. The timing of these events matches civil war-related mass movements of refugees and accompanying environmental degradation. Forest and habitat destruction and human predation of the natural reservoir are likely explanations for the sharp decline observed in the rodent populations, the consequent virus population decline, and the coincident increased incidence of Lassa fever in these regions. Interestingly, we were also able to detect a similar pattern in Nigeria coinciding with the Biafra war. Our findings show that anthropogenic factors may profoundly impact the population genetics of a virus and its reservoir within the context of an emerging infectious disease.


Assuntos
Reservatórios de Doenças/virologia , Vírus Lassa/genética , Murinae/genética , Murinae/virologia , Guerra , Animais , Teorema de Bayes , Doenças Transmissíveis/genética , Doenças Transmissíveis/virologia , Variação Genética , Genética Populacional/métodos , Guiné/epidemiologia , Humanos , Febre Lassa/epidemiologia , Febre Lassa/virologia , Nigéria/epidemiologia , Nucleoproteínas/genética , Refugiados , Roedores/genética , Roedores/virologia , Zoonoses/epidemiologia , Zoonoses/transmissão
13.
C R Biol ; 332(5): 480-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19393980

RESUMO

In this study, we investigate skull size and shape differentiation between sibling species of Mastomys with the aim to characterize and discriminate three sympatric species found in West Africa: M. huberti, M. erythroleucus and M. natalensis. A total of 133 genetically determined specimens were used for the morphometric analyses. Statistical analyses clearly demonstrated that the three species largely overlapped in centroid size (M. erythroleucus tends to be larger on average than the M. huberti and M. natalensis) but they exhibited large differences in skull shape. The current study focused on skull shape, and allowed us to discriminate three morphological groups that are congruent with the three species suggested by molecular identification (90% of the individuals are correctly assigned by cross-validated classifications). In the Mastomys, the evolution of cranial length and shape may be influenced by competitive pressure between closely related species separated by ecological segregation. This source of variability could possibly induce character displacement between species of Mastomys.


Assuntos
Murinae/classificação , Animais , Cefalometria , Feminino , Guiné , Masculino , Murinae/anatomia & histologia , Murinae/genética , Odontometria , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA