Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36657616

RESUMO

Spinal injuries are a concern for automotive applications, requiring large parametric studies to understand spinal injury mechanisms under complex loading conditions. Finite element computational human body models (e.g. Global Human Body Models Consortium (GHBMC) models) can be used to identify spinal injury mechanisms. However, the existing GHBMC detailed models (with high computational time) or GHBMC simplified models (lacking vertebral fracture prediction capabilities) are not ideal for studying spinal injury mechanisms in large parametric studies. To overcome these limitations, a modular 50th percentile male simplified occupant model combining advantages of both the simplified and detailed models, M50-OS + DeformSpine, was developed by incorporating the deformable spine and 3D neck musculature from the detailed GHBMC model M50-O (v6.0) into the simplified GHBMC model M50-OS (v2.3). This new modular model was validated against post-mortem human subject test data in four rigid hub impactor tests and two frontal impact sled tests. The M50-OS + DeformSpine model showed good agreement with experimental test data with an average CORrelation and Analysis (CORA) score of 0.82 for the hub impact tests and 0.75 for the sled impact tests. CORA scores were statistically similar overall between the M50-OS + DeformSpine (0.79 ± 0.11), M50-OS (0.79 ± 0.11), and M50-O (0.82 ± 0.11) models (p > 0.05). This new model is computationally 6 times faster than the detailed M50-O model, with added spinal injury prediction capabilities over the simplified M50-OS model.


Assuntos
Corpo Humano , Fraturas da Coluna Vertebral , Humanos , Masculino , Análise de Elementos Finitos , Modelos Biológicos , Acidentes de Trânsito , Fenômenos Biomecânicos
2.
Ann Biomed Eng ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836980

RESUMO

Extravehicular activities will play a crucial role in lunar exploration on upcoming Artemis missions and may involve astronauts operating a lunar terrain vehicle (LTV) in a standing posture. This study assessed kinematic response and injury risks using an active muscle human body model (HBM) restrained in an upright posture on the LTV by simulating dynamic acceleration pulses related to lunar surface irregularities. Linear accelerations and rotational displacements of 5 lunar obstacles (3 craters; 2 rocks) over 5 slope inclinations were applied across 25 simulations. All body injury metrics were below NASA's injury tolerance limits, but compressive forces were highest in the lumbar (250-550N lumbar, tolerance: 5300N) and lower extremity (190-700N tibia, tolerance: 1350N) regions. There was a strong association between the magnitudes of body injury metrics and LTV resultant linear acceleration (ρ = 0.70-0.81). There was substantial upper body motion, with maximum forward excursion reaching 375 mm for the head and 260 mm for the chest. Our findings suggest driving a lunar rover in an upright posture for these scenarios is a low severity impact presenting low body injury risks. Injury metrics increased along the load path, from the lower body (highest metrics) to the upper body (lowest metrics). While upper body injury metrics were low, increased body motion could potentially pose a risk of injury from flail and occupant interaction with the surrounding vehicle, suit, and restraint hardware.

3.
Comput Methods Biomech Biomed Engin ; 26(11): 1288-1293, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35998228

RESUMO

This study compared two morphing techniques (and their serial combination) to create subject-specific finite element models of 15 astronaut vertebrae. Surface deviations of the morphed models were compared against subject geometries extracted from medical images. The optimal morphing process yielded models with minimal difference in root-mean-square (RMS) deviation (C3, 0.52 ± 0.14 mm; T3, 0.34 ± 0.04 mm; L1, 0.59 ± 0.16 mm) of the subject's vertebral geometry. <1% of model elements failed quality checks and compression simulations ran to completion. This research lays the foundation for the development of subject-specific finite element models to quantify musculoskeletal changes and injury risk from spaceflight.


Assuntos
Coluna Vertebral , Análise de Elementos Finitos , Coluna Vertebral/diagnóstico por imagem
4.
Ann Biomed Eng ; 51(2): 430-442, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36018394

RESUMO

A sensitivity analysis for loading conditions and muscle deconditioning on astronaut response for spaceflight transient accelerations was carried out using a mid-size male human body model with active musculature. The model was validated in spaceflight-relevant 2.5-15 g loading magnitudes in seven volunteer tests, showing good biofidelity (CORA: 0.69). Sensitivity analysis was carried out in simulations varying pulse magnitude (5, 10, and 15 g), rise time (32.5 and 120 ms), and direction (10 directions: frontal, rear, vertical, lateral, and their combination) along with muscle size change (± 15% change) and responsiveness (pre-braced, relaxed, vs. delayed response) changes across 600 simulations. Injury metrics were most sensitive to the loading direction (50%, partial-R2) and least sensitive to muscle size changes (0.2%). The pulse magnitude also had significant effect on the injury metrics (16%), whereas muscle responsiveness (3%) and pulse rise time (2%) had only slight effects. Frontal and upward loading directions were the worst for neck, spine, and lower extremity injury metrics, whereas rear and downward directions were the worst for head injury metrics. Higher magnitude pulses and pre-bracing also increased the injury risk.


Assuntos
Astronautas , Voo Espacial , Humanos , Masculino , Modelos Biológicos , Acidentes de Trânsito , Músculos , Fenômenos Biomecânicos , Análise de Elementos Finitos
5.
Ann Biomed Eng ; 51(3): 632-641, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36125604

RESUMO

Active muscles play an important role in postural stabilization, and muscle-induced joint stiffening can alter the kinematic response of the human body, particularly that of the lower extremities, under dynamic loading conditions. There are few full-body human body finite element models with active muscles in a standing posture. Thus, the objective of this study was to develop and validate the M50-PS+Active model, an average-male simplified human body model in a standing posture with active musculature. The M50-PS+Active model was developed by incorporating 116 skeletal muscles, as one-dimensional beam elements with a Hill-type material model and closed-loop Proportional Integral Derivative (PID) controller muscle activation strategy, into the Global Human Body Models Consortium (GHBMC) simplified pedestrian model M50-PS. The M50-PS+Active model was first validated in a gravity standing test, showing the effectiveness of the active muscles in maintaining a standing posture under gravitational loading. The knee kinematics of the model were compared against volunteer kinematics in unsuited and suited step-down tests from NASA's active response gravity offload system (ARGOS) laboratory. The M50-PS+Active model showed good biofidelity with volunteer kinematics with an overall CORA score of 0.80, as compared to 0.64 (fair) in the passive M50-PS model. The M50-PS+Active model will serve as a useful tool to study the biomechanics of the human body in vehicle-pedestrian accidents, public transportation braking, and space missions piloted in a standing posture.


Assuntos
Acidentes de Trânsito , Corpo Humano , Humanos , Masculino , Análise de Elementos Finitos , Modelos Biológicos , Músculo Esquelético/fisiologia , Postura , Fenômenos Biomecânicos
6.
Ann Biomed Eng ; 51(5): 951-965, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36352272

RESUMO

Astronauts may pilot a future lunar lander in a standing or upright/reclined seated posture. This study compared kinematics and injury risk for the upright/reclined (30°; 60°) seated vs. standing postures for lunar launch/landing using human body modeling across 30 simulations. While head metrics for standing and upright seated postures were comparable to 30 cm height jumps, those of reclined postures were closer to 60 cm height jumps. Head linear acceleration for 60° reclined posture in the 5 g/10 ms pulse exceeded NASA's tolerance (10.1 g; tolerance: 10 g). Lower extremity metrics exceeding NASA's tolerance in the standing posture (revised tibia index: 0.36-0.53; tolerance: 0.43) were lowered in seated postures (0.00-0.04). Head displacement was higher in standing vs. seated (9.0 cm vs. 2.4 cm forward, 7.0 cm vs. 1.3 cm backward, 2.1 cm vs. 1.2 cm upward, 7.3 cm vs. 0.8 cm downward, 2.4 cm vs. 3.2 cm lateral). Higher arm movement was seen with seated vs. standing (40 cm vs. 25 cm forward, 60 cm vs. 15 cm upward, 30 cm vs. 20 cm downward). Pulse-nature contributed more than 40% to the injury metrics for seated postures compared to 80% in the standing posture. Seat recline angle contributed about 22% to the injury metrics in the seated posture. This study established a computational methodology to simulate the different postures of an astronaut for lunar landings and generated baseline injury risk and body kinematics data.


Assuntos
Astronautas , Postura , Humanos , Fenômenos Biomecânicos , Posição Ortostática , Movimento
7.
Ann Biomed Eng ; 51(7): 1408-1419, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36652027

RESUMO

While astronauts may pilot future lunar landers in a standing posture, the response of the human body under lunar launch and landing-related dynamic loading conditions is not well understood. It is important to consider the effects of active muscles under these loading conditions as muscles stabilize posture while standing. In the present study, astronaut response for a piloted lunar mission in a standing posture was simulated using an active human body model (HBM) with a closed-loop joint-angle based proportional integral derivative controller muscle activation strategy and compared with a passive HBM to understand the effects of active muscles on astronaut body kinematics and injury risk. While head, neck, and lumbar spine injury risk were relatively unaffected by active muscles, the lower extremity injury risk and the head and arm kinematics were significantly changed. Active muscle prevented knee-buckling and spinal slouching and lowered tibia injury risk in the active vs. passive model (revised tibia index: 0.02-0.40 vs. 0.01-0.58; acceptable tolerance: 0.43). Head displacement was higher in the active vs. passive model (11.6 vs. 9.0 cm forward, 6.3 vs. 7.0 cm backward, 7.9 vs. 7.3 cm downward, 3.7 vs. 2.4 cm lateral). Lower arm movement was seen with the active vs. passive model (23 vs. 35 cm backward, 12 vs. 20 cm downward). Overall simulations suggest that the passive model may overpredict injury risk in astronauts for spaceflight loading conditions, which can be improved using the model with active musculature.


Assuntos
Astronautas , Pescoço , Humanos , Fenômenos Biomecânicos , Pescoço/fisiologia , Coluna Vertebral/fisiologia , Músculo Esquelético/fisiologia
8.
Ann Biomed Eng ; 50(12): 1857-1871, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35818016

RESUMO

During future lunar missions, astronauts may be required to pilot vehicles while standing, and the associated kinematic and injury response is not well understood. In this study, we used human body modeling to predict unsuited astronaut kinematics and injury risk for piloted lunar launches and landings in the standing posture. Three pulses (2-5 g; 10-150 ms rise times) were applied in 10 directions (vertical; ± 10-degree offsets) for a total of 30 simulations. Across all simulations, motion envelopes were computed to quantify displacement of the astronaut's head (max 9.0 cm forward, 7.0 cm backward, 2.1 cm upward, 7.3 cm downward, 2.4 cm lateral) and arms (max 25 cm forward, 35 cm backward, 15 cm upward, 20 cm downward, 20 cm lateral). All head, neck, lumbar, and lower extremity injury metrics were within NASA's tolerance limits, except tibia compression forces (0-1543 N upper tibia; 0-1482 N lower tibia; tolerance-1350 N) and revised tibia index (0.04-0.58 upper tibia; 0.03-0.48 lower tibia; tolerance-0.43) for the 2.7 g/150 ms pulse. Pulse magnitude and duration contributed over 80% to the injury metric values, whereas loading direction contributed less than 3%. Overall, these simulations suggest piloting a lunar lander vehicle in the standing posture presents a tibia injury risk which is potentially outside NASA's acceptance limits and warrants further investigation.


Assuntos
Astronautas , Postura , Humanos , Fenômenos Biomecânicos , Postura/fisiologia , Tíbia , Pescoço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA