Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Mol Psychiatry ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514804

RESUMO

Bridging Integrator 1 (BIN1) is the second most important Alzheimer's disease (AD) risk gene, but its physiological roles in neurons and its contribution to brain pathology remain largely elusive. In this work, we show that BIN1 plays a critical role in the regulation of calcium homeostasis, electrical activity, and gene expression of glutamatergic neurons. Using single-cell RNA-sequencing on cerebral organoids generated from isogenic BIN1 wild type (WT), heterozygous (HET) and homozygous knockout (KO) human-induced pluripotent stem cells (hiPSCs), we show that BIN1 is mainly expressed by oligodendrocytes and glutamatergic neurons, like in the human brain. Both BIN1 HET and KO cerebral organoids show specific transcriptional alterations, mainly associated with ion transport and synapses in glutamatergic neurons. We then demonstrate that BIN1 cell-autonomously regulates gene expression in glutamatergic neurons by using a novel protocol to generate pure culture of hiPSC-derived induced neurons (hiNs). Using this system, we also show that BIN1 plays a key role in the regulation of neuronal calcium transients and electrical activity via its interaction with the L-type voltage-gated calcium channel Cav1.2. BIN1 KO hiNs show reduced activity-dependent internalization and higher Cav1.2 expression compared to WT hiNs. Pharmacological blocking of this channel with clinically relevant doses of nifedipine, a calcium channel blocker, partly rescues electrical and gene expression alterations in BIN1 KO glutamatergic neurons. Further, we show that transcriptional alterations in BIN1 KO hiNs that affect biological processes related to calcium homeostasis are also present in glutamatergic neurons of the human brain at late stages of AD pathology. Together, these findings suggest that BIN1-dependent alterations in neuronal properties could contribute to AD pathophysiology and that treatment with low doses of clinically approved calcium blockers should be considered as an option to slow disease-onset and progression.

2.
Curr Issues Mol Biol ; 46(1): 934-947, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275674

RESUMO

The present study investigated the association of genetic predisposition for white matter hyperintensities (WMHs) with incident amnestic mild cognitive impairment (aMCI) or Alzheimer's disease (AD), as well as whether such an association was influenced by age, sex, and cognitive reserve. Overall, 537 individuals without aMCI or dementia at baseline were included. Among them, 62 individuals developed aMCI/AD at follow up. Genetic propensity to WMH was estimated using a polygenic risk score for WMHs (PRS WMH). The association of PRS WMH with aMCI/AD incidence was examined using COX models. A higher PRS WMH was associated with a 47.2% higher aMCI/AD incidence (p = 0.015) in the fully adjusted model. Subgroup analyses showed significant results in the older age group, in which individuals with a higher genetic predisposition for WMHs had a 3.4-fold higher risk for developing aMCI/AD at follow up (p < 0.001), as well as in the lower cognitive reserve (CR, proxied by education years) group, in which individuals with a higher genetic predisposition for WMHs had an over 2-fold higher risk (p = 0.013). Genetic predisposition for WMHs was associated with aMCI/AD incidence, particularly in the group of participants with a low CR. Thus, CR might be a modifier in the relationship between genetic predisposition for WMHs and incident aMCI/AD.

3.
Mol Psychiatry ; 28(7): 2716-2727, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37131074

RESUMO

Alzheimer's disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting to reveal the major impact of rare variants - even in genes like APOE - on the AD risk. This increasingly comprehensive knowledge is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated. Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between various neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , Biomarcadores , Apolipoproteínas E/genética
4.
Alzheimers Dement ; 20(2): 1298-1308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985413

RESUMO

INTRODUCTION: Genome-wide association studies (GWAS) are fundamental for identifying loci associated with diseases. However, they require replication in other ethnicities. METHODS: We performed GWAS on sporadic Alzheimer's disease (AD) including 539 patients and 854 controls from Argentina and Chile. We combined our results with those from the European Alzheimer and Dementia Biobank (EADB) in a meta-analysis and tested their genetic risk score (GRS) performance in this admixed population. RESULTS: We detected apolipoprotein E ε4 as the single genome-wide significant signal (odds ratio  = 2.93 [2.37-3.63], P = 2.6 × 10-23 ). The meta-analysis with EADB summary statistics revealed four new loci reaching GWAS significance. Functional annotations of these loci implicated endosome/lysosomal function. Finally, the AD-GRS presented a similar performance in these populations, despite the score diminished when the Native American ancestry rose. DISCUSSION: We report the first GWAS on AD in a population from South America. It shows shared genetics modulating AD risk between the European and these admixed populations. HIGHLIGHTS: This is the first genome-wide association study on Alzheimer's disease (AD) in a population sample from Argentina and Chile. Trans-ethnic meta-analysis reveals four new loci involving lysosomal function in AD. This is the first independent replication for TREM2L, IGH-gene-cluster, and ADAM17 loci. A genetic risk score (GRS) developed in Europeans performed well in this population. The higher the Native American ancestry the lower the GRS values.


Assuntos
Doença de Alzheimer , Azidas , Estudo de Associação Genômica Ampla , Humanos , Chile , Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
5.
Neurobiol Dis ; 182: 106140, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37120095

RESUMO

The rare A673T variant was the first variant found within the amyloid precursor protein (APP) gene conferring protection against Alzheimer's disease (AD). Thereafter, different studies have discovered that the carriers of the APP A673T variant show reduced levels of amyloid beta (Aß) in the plasma and better cognitive performance at high age. Here, we analyzed cerebrospinal fluid (CSF) and plasma of APP A673T carriers and control individuals using a mass spectrometry-based proteomics approach to identify differentially regulated targets in an unbiased manner. Furthermore, the APP A673T variant was introduced into 2D and 3D neuronal cell culture models together with the pathogenic APP Swedish and London mutations. Consequently, we now report for the first time the protective effects of the APP A673T variant against AD-related alterations in the CSF, plasma, and brain biopsy samples from the frontal cortex. The CSF levels of soluble APPß (sAPPß) and Aß42 were significantly decreased on average 9-26% among three APP A673T carriers as compared to three well-matched controls not carrying the protective variant. Consistent with these CSF findings, immunohistochemical assessment of cortical biopsy samples from the same APP A673T carriers did not reveal Aß, phospho-tau, or p62 pathologies. We identified differentially regulated targets involved in protein phosphorylation, inflammation, and mitochondrial function in the CSF and plasma samples of APP A673T carriers. Some of the identified targets showed inverse levels in AD brain tissue with respect to increased AD-associated neurofibrillary pathology. In 2D and 3D neuronal cell culture models expressing APP with the Swedish and London mutations, the introduction of the APP A673T variant resulted in lower sAPPß levels. Concomitantly, the levels of sAPPα were increased, while decreased levels of CTFß and Aß42 were detected in some of these models. Our findings emphasize the important role of APP-derived peptides in the pathogenesis of AD and demonstrate the effectiveness of the protective APP A673T variant to shift APP processing towards the non-amyloidogenic pathway in vitro even in the presence of two pathogenic mutations.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Heterozigoto , Encéfalo/metabolismo
6.
Cell ; 133(7): 1149-61, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585350

RESUMO

Alzheimer's disease (AD) is a genetically heterogeneous disorder characterized by early hippocampal atrophy and cerebral amyloid-beta (Abeta) peptide deposition. Using TissueInfo to screen for genes preferentially expressed in the hippocampus and located in AD linkage regions, we identified a gene on 10q24.33 that we call CALHM1. We show that CALHM1 encodes a multipass transmembrane glycoprotein that controls cytosolic Ca(2+) concentrations and Abeta levels. CALHM1 homomultimerizes, shares strong sequence similarities with the selectivity filter of the NMDA receptor, and generates a large Ca(2+) conductance across the plasma membrane. Importantly, we determined that the CALHM1 P86L polymorphism (rs2986017) is significantly associated with AD in independent case-control studies of 3404 participants (allele-specific OR = 1.44, p = 2 x 10(-10)). We further found that the P86L polymorphism increases Abeta levels by interfering with CALHM1-mediated Ca(2+) permeability. We propose that CALHM1 encodes an essential component of a previously uncharacterized cerebral Ca(2+) channel that controls Abeta levels and susceptibility to late-onset AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Cálcio/metabolismo , Predisposição Genética para Doença , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Polimorfismo Genético , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Canais de Cálcio , Membrana Celular/metabolismo , Cromossomos Humanos Par 10 , Citosol/metabolismo , Feminino , Genoma Humano , Humanos , Masculino , Glicoproteínas de Membrana/química , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
7.
Alzheimers Dement ; 19(9): 3794-3805, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895094

RESUMO

INTRODUCTION: We constructed a polygenic risk score (PRS) for ß-amyloid (PRSAß42) to proxy AD pathology and investigated its association with incident Alzheimer's disease (AD)/amnestic mild cognitive impairment (aMCI) and the influence of cognitive reserve (CR), proxied by educational years, on the relationship between PRSAß42 and AD/aMCI risk. METHODS: A total of 618 cognitive-normal participants were followed-up for 2.92 years. The association of PRSAß42 and CR with AD/aMCI incidence was examined with COX models. Then we examined the additive interaction between PRSAß42 and CR and the CR effect across participants with different PRSAß42 levels. RESULTS: Higher PRSAß42 and CR were associated with a 33.9% higher risk and 8.3% less risk for AD/aMCI, respectively. An additive interaction between PRSAß42 and CR was observed. High CR was associated with 62.6% less risk of AD/aMCI incidence only in the high-PRSAß42 group. DISCUSSION: A super-additive effect of PRSAß42 and CR on AD/aMCI risk was observed. CR influence was evident in participants with high PRSAß42.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Reserva Cognitiva , Humanos , Doença de Alzheimer/complicações , Testes Neuropsicológicos , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações
8.
Mol Psychiatry ; 26(10): 5592-5607, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33144711

RESUMO

Although APP metabolism is being intensively investigated, a large fraction of its modulators is yet to be characterized. In this context, we combined two genome-wide high-content screenings to assess the functional impact of miRNAs and genes on APP metabolism and the signaling pathways involved. This approach highlighted the involvement of FERMT2 (or Kindlin-2), a genetic risk factor of Alzheimer's disease (AD), as a potential key modulator of axon guidance, a neuronal process that depends on the regulation of APP metabolism. We found that FERMT2 directly interacts with APP to modulate its metabolism, and that FERMT2 underexpression impacts axonal growth, synaptic connectivity, and long-term potentiation in an APP-dependent manner. Last, the rs7143400-T allele, which is associated with an increased AD risk and localized within the 3'UTR of FERMT2, induced a downregulation of FERMT2 expression through binding of miR-4504 among others. This miRNA is mainly expressed in neurons and significantly overexpressed in AD brains compared to controls. Altogether, our data provide strong evidence for a detrimental effect of FERMT2 underexpression in neurons and insight into how this may influence AD pathogenesis.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Humanos , Proteínas de Membrana , Proteínas de Neoplasias , Plasticidade Neuronal/genética , Neurônios , Fatores de Risco
9.
Int Psychogeriatr ; 33(3): 295-306, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33715647

RESUMO

OBJECTIVES: To evaluate the association between neuropsychiatric symptoms and apolipoprotein E (APOE) ϵ4 allele among older people in Central African Republic (CAR) and the Republic of Congo (ROC). DESIGN: Multicenter population-based study following a two-phase design. SETTING: From 2011 to 2012, rural and urban areas of CAR and ROC. PARTICIPANTS: People aged 65 and over. MEASUREMENTS: Following screening using the Community Screening Interview for Dementia, participants with low cognitive scores (CSI-D ≤ 24.5) underwent clinical assessment. Dementia diagnosis followed the DSM-IV criteria and Peterson's criteria were considered for Mild Cognitive Impairment (MCI). Neuropsychiatric symptoms were evaluated through the brief version of the Neuropsychiatric Inventory (NPI-Q). Blood samples were taken from all consenting participants before APOE genotyping was performed by polymerase chain reaction (PCR). Logistic regression models were used to evaluate the association between the APOE ϵ4 allele and neuropsychiatric symptoms. RESULTS: Overall, 322 participants had complete information on both neuropsychiatric symptoms and APOE status. Median age was 75.0 years and 81.1% were female. Neuropsychiatric symptoms were reported by 192 participants (59.8%) and at least 1 APOE ϵ4 allele was present in 135 (41.9%). APOE ϵ4 allele was not significantly associated with neuropsychiatric symptoms but showed a trend toward a protective effect in some models. CONCLUSION: This study is the first one investigating the association between APOE ϵ4 and neuropsychiatric symptoms among older people in sub-Saharan Africa (SSA). Preliminary findings indicate that the APOE ϵ4 allele was not associated with neuropsychiatric symptoms. Further research seems, however, needed to investigate the protective trend found in this study.


Assuntos
Alelos , Apolipoproteína E4/genética , Disfunção Cognitiva , Demência/genética , Demência/psicologia , Idoso , Idoso de 80 Anos ou mais , República Centro-Africana , Congo , Feminino , Humanos , Masculino , Testes Neuropsicológicos
10.
Alzheimers Dement ; 17(10): 1663-1674, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34002480

RESUMO

INTRODUCTION: There is increasing interest in plasma amyloid beta (Aß) as an endophenotype of Alzheimer's disease (AD). Identifying the genetic determinants of plasma Aß levels may elucidate important biological processes that determine plasma Aß measures. METHODS: We included 12,369 non-demented participants from eight population-based studies. Imputed genetic data and measured plasma Aß1-40, Aß1-42 levels and Aß1-42/Aß1-40 ratio were used to perform genome-wide association studies, and gene-based and pathway analyses. Significant variants and genes were followed up for their association with brain positron emission tomography Aß deposition and AD risk. RESULTS: Single-variant analysis identified associations with apolipoprotein E (APOE) for Aß1-42 and Aß1-42/Aß1-40 ratio, and BACE1 for Aß1-40. Gene-based analysis of Aß1-40 additionally identified associations for APP, PSEN2, CCK, and ZNF397. There was suggestive evidence for interaction between a BACE1 variant and APOE ε4 on brain Aß deposition. DISCUSSION: Identification of variants near/in known major Aß-processing genes strengthens the relevance of plasma-Aß levels as an endophenotype of AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Amiloide , Apolipoproteínas E/genética , Ácido Aspártico Endopeptidases/genética , Estudo de Associação Genômica Ampla , Voluntários Saudáveis , Presenilina-2/genética , Doença de Alzheimer/genética , Amiloide/sangue , Amiloide/metabolismo , Encéfalo/metabolismo , Humanos , Tomografia por Emissão de Pósitrons
11.
Acta Neuropathol ; 139(6): 1025-1044, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32166339

RESUMO

A rare coding variant (rs72824905, p.P522R) conferring protection against Alzheimer's disease (AD) was identified in the gene encoding the enzyme phospholipase-C-γ2 (PLCG2) that is highly expressed in microglia. To explore the protective nature of this variant, we employed latent process linear mixed models to examine the association of p.P522R with longitudinal cognitive decline in 3595 MCI patients, and in 10,097 individuals from population-based studies. Furthermore, association with CSF levels of pTau181, total tau, and Aß1-42 was assessed in 1261 MCI patients. We found that MCI patients who carried the p.P522R variant showed a slower rate of cognitive decline compared to non-carriers and that this effect was mediated by lower pTau181 levels in CSF. The effect size of the association of p.P522R with the cognitive decline and pTau181 was similar to that of APOE-ε4, the strongest genetic risk factor for AD. Interestingly, the protective effect of p.P522R was more pronounced in MCI patients with low Aß1-42 levels suggesting a role of PLCG2 in the response to amyloid pathology. In line with this hypothesis, we observed no protective effect of the PLCG2 variant on the cognitive decline in population-based studies probably due to the lower prevalence of amyloid positivity in these samples compared to MCI patients. Concerning the potential biological underpinnings, we identified a network of co-expressed proteins connecting PLCG2 to APOE and TREM2 using unsupervised co-regulatory network analysis. The network was highly enriched for the complement cascade and genes differentially expressed in disease-associated microglia. Our data show that p.P522R in PLCG2 reduces AD disease progression by mitigating tau pathology in the presence of amyloid pathology and, as a consequence, maintains cognitive function. Targeting the enzyme PLCG2 might provide a new therapeutic approach for treating AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Fosfolipase C gama/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Biomarcadores/análise , Cognição/fisiologia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo
12.
Am J Hum Genet ; 98(6): 1208-1219, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27231129

RESUMO

Men have a shorter life expectancy compared with women but the underlying factor(s) are not clear. Late-onset, sporadic Alzheimer disease (AD) is a common and lethal neurodegenerative disorder and many germline inherited variants have been found to influence the risk of developing AD. Our previous results show that a fundamentally different genetic variant, i.e., lifetime-acquired loss of chromosome Y (LOY) in blood cells, is associated with all-cause mortality and an increased risk of non-hematological tumors and that LOY could be induced by tobacco smoking. We tested here a hypothesis that men with LOY are more susceptible to AD and show that LOY is associated with AD in three independent studies of different types. In a case-control study, males with AD diagnosis had higher degree of LOY mosaicism (adjusted odds ratio = 2.80, p = 0.0184, AD events = 606). Furthermore, in two prospective studies, men with LOY at blood sampling had greater risk for incident AD diagnosis during follow-up time (hazard ratio [HR] = 6.80, 95% confidence interval [95% CI] = 2.16-21.43, AD events = 140, p = 0.0011). Thus, LOY in blood is associated with risks of both AD and cancer, suggesting a role of LOY in blood cells on disease processes in other tissues, possibly via defective immunosurveillance. As a male-specific risk factor, LOY might explain why males on average live shorter lives than females.


Assuntos
Doença de Alzheimer/genética , Cromossomos Humanos Y/genética , Mosaicismo , Polimorfismo de Nucleotídeo Único/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Fatores de Risco
13.
Acta Neuropathol ; 138(2): 221-236, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30982098

RESUMO

A strong genetic predisposition (60-80% of attributable risk) is present in Alzheimer's disease (AD). In view of this major genetic component, identification of the genetic risk factors has been a major objective in the AD field with the ultimate aim to better understand the pathological processes. In this review, we present how the genetic risk factors are involved in APP metabolism, ß-amyloid peptide production, degradation, aggregation and toxicity, innate immunity, and Tau toxicity. In addition, on the basis of the new genetic landscape, resulting from the recent high-throughput genomic approaches and emerging neurobiological information, we propose an over-arching model in which the focal adhesion pathway and the related cell signalling are key elements in AD pathogenesis. The core of the focal adhesion pathway links the physiological functions of amyloid precursor protein and Tau with the pathophysiological processes they are involved in. This model includes several entry points, fitting with the different origins for the disease, and supports the notion that dysregulation of synaptic plasticity is a central node in AD. Notably, our interpretation of the latest data from genome wide association studies complements other hypotheses already developed in the AD field, i.e., amyloid cascade, cellular phase or propagation hypotheses. Genetically driven synaptic failure hypothesis will need to be further tested experimentally within the general AD framework.


Assuntos
Doença de Alzheimer/genética , Amiloide/metabolismo , Modelos Genéticos , Modelos Neurológicos , Sinapses/fisiologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Endocitose , Adesões Focais , Predisposição Genética para Doença , Humanos , Emaranhados Neurofibrilares , Plasticidade Neuronal , Placa Amiloide , Fatores de Risco , Sequenciamento do Exoma , Proteínas tau/metabolismo
14.
Acta Neuropathol ; 138(4): 631-652, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31065832

RESUMO

The bridging integrator 1 gene (BIN1) is a major genetic risk factor for Alzheimer's disease (AD). In this report, we investigated how BIN1-dependent pathophysiological processes might be associated with Tau. We first generated a cohort of control and transgenic mice either overexpressing human MAPT (TgMAPT) or both human MAPT and BIN1 (TgMAPT;TgBIN1), which we followed-up from 3 to 15 months. In TgMAPT;TgBIN1 mice short-term memory deficits appeared earlier than in TgMAPT mice; however-unlike TgMAPT mice-TgMAPT;TgBIN1 mice did not exhibit any long-term or spatial memory deficits for at least 15 months. After killing the cohort at 18 months, immunohistochemistry revealed that BIN1 overexpression prevents both Tau mislocalization and somatic inclusion in the hippocampus, where an increase in BIN1-Tau interaction was also observed. We then sought mechanisms controlling the BIN1-Tau interaction. We developed a high-content screening approach to characterize modulators of the BIN1-Tau interaction in an agnostic way (1,126 compounds targeting multiple pathways), and we identified-among others-an inhibitor of calcineurin, a Ser/Thr phosphatase. We determined that calcineurin dephosphorylates BIN1 on a cyclin-dependent kinase phosphorylation site at T348, promoting the open conformation of the neuronal BIN1 isoform. Phosphorylation of this site increases the availability of the BIN1 SH3 domain for Tau interaction, as demonstrated by nuclear magnetic resonance experiments and in primary neurons. Finally, we observed that although the levels of the neuronal BIN1 isoform were unchanged in AD brains, phospho-BIN1(T348):BIN1 ratio was increased, suggesting a compensatory mechanism. In conclusion, our data support the idea that BIN1 modulates the AD risk through an intricate regulation of its interaction with Tau. Alteration in BIN1 expression or activity may disrupt this regulatory balance with Tau and have direct effects on learning and memory.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transtornos da Memória/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Tauopatias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Memória Espacial/fisiologia , Tauopatias/genética , Tauopatias/patologia , Proteínas Supressoras de Tumor/genética
16.
Acta Neuropathol ; 133(6): 955-966, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27933404

RESUMO

Genome-wide association studies (GWASs) have identified 19 susceptibility loci for Alzheimer's disease (AD). However, understanding how these genes are involved in the pathophysiology of AD is one of the main challenges of the "post-GWAS" era. At least 123 genes are located within the 19 susceptibility loci; hence, a conventional approach (studying the genes one by one) would not be time- and cost-effective. We therefore developed a genome-wide, high-content siRNA screening approach and used it to assess the functional impact of gene under-expression on APP metabolism. We found that 832 genes modulated APP metabolism. Eight of these genes were located within AD susceptibility loci. Only FERMT2 (a ß3-integrin co-activator) was also significantly associated with a variation in cerebrospinal fluid Aß peptide levels in 2886 AD cases. Lastly, we showed that the under-expression of FERMT2 increases Aß peptide production by raising levels of mature APP at the cell surface and facilitating its recycling. Taken as a whole, our data suggest that FERMT2 modulates the AD risk by regulating APP metabolism and Aß peptide production.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Biomarcadores/líquido cefalorraquidiano , Membrana Celular/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Neurônios/metabolismo , Neurônios/patologia , Interferência de RNA , Ratos
18.
N Engl J Med ; 368(2): 117-27, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23150934

RESUMO

BACKGROUND: Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS: We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS: We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P=0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P=0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS: Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.).


Assuntos
Doença de Alzheimer/genética , Glicoproteínas de Membrana/genética , Mutação , Receptores Imunológicos/genética , Idoso , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Exoma/genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Técnicas de Genotipagem , Heterozigoto , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos A , RNA Mensageiro/metabolismo , Receptores Imunológicos/metabolismo , Fatores de Risco , Análise de Sequência de DNA/métodos
19.
Brain ; 138(Pt 12): 3673-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490334

RESUMO

The identification of subjects at high risk for Alzheimer's disease is important for prognosis and early intervention. We investigated the polygenic architecture of Alzheimer's disease and the accuracy of Alzheimer's disease prediction models, including and excluding the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and 37 154 controls obtained from the International Genomics of Alzheimer's Project (IGAP). Polygenic score analysis tested whether the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and 1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component enriched in Alzheimer's disease (P = 4.9 × 10(-26)). This enrichment remained significant after APOE and other genome-wide associated regions were excluded (P = 3.4 × 10(-19)). The best prediction accuracy AUC = 78.2% (95% confidence interval 77-80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion, Alzheimer's disease has a significant polygenic component, which has predictive utility for Alzheimer's disease risk and could be a valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case prediction from chance with increased prediction at polygenic extremes.


Assuntos
Doença de Alzheimer/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Herança Multifatorial/genética , Alelos , Apolipoproteínas E/genética , Estudos de Casos e Controles , Testes Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Modelos Logísticos , Curva ROC , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA