Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(5): 2592-2604, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760330

RESUMO

Marine picoplankton contribute to global carbon sequestration and nutrient recycling. These processes are directly related to the composition of communities, which in turn depends on microbial interactions and environmental forcing. Under regular seasonal cycles, marine communities show strong predictable patterns of annual re-occurrences, but little is known about the effect of environmental perturbation on their organization. The aim of our study was to investigate the co-occurrence patterns of planktonic picoeukaryote, bacteria and archaea under contrasting environmental conditions. The study was designed to have high sampling frequency that could match both the biological rhythm of marine microbes and the short time scale of extreme weather events. Our results show that microbial networks changed from year to year depending on conditions. In addition, individual taxa became less interconnected and changed neighbours, which revealed an unfaithful relationship between marine microorganisms. This unexpected pattern suggests possible switches between organisms that have similar specific functions, or hints at the presence of organisms that share similar environmental niches without interacting. Despite the observed annual changes, the time series showed re-occurring communities that appear to recover from perturbations. Changing co-occurrence patterns between marine microorganisms may allow the long-term stability of ecosystems exposed to contrasting meteorological events.


Assuntos
Archaea , Ecossistema , Archaea/genética , Bactérias/genética , Plâncton , Estações do Ano
2.
New Phytol ; 206(4): 1450-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25728686

RESUMO

Cryptochromes are widespread blue-light absorbing flavoproteins with important signaling roles. In plants they mediate de-etiolation, developmental and stress responses resulting from interaction with downstream signaling partners such as transcription factors and components of the proteasome. Recently, it has been shown that Arabidopsis cry1 activation by blue light also results in direct enzymatic conversion of molecular oxygen (O2 ) to reactive oxygen species (ROS) and hydrogen peroxide (H2 O2 ) in vitro. Here we explored whether direct enzymatic synthesis of ROS by Arabidopsis cry1 can play a physiological role in vivo. ROS formation resulting from cry1 expression was measured by fluorescence assay in insect cell cultures and in Arabidopsis protoplasts from cryptochrome mutant seedlings. Cell death was determined by colorimetric assay. We found that ROS formation results from cry1 activation and induces cell death in insect cell cultures. In plant protoplasts, cryptochrome activation results in rapid increase in ROS formation and cell death. We conclude that ROS formation by cryptochromes may indeed be of physiological relevance and could represent a novel paradigm for cryptochrome signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Evolução Biológica , Criptocromos/metabolismo , Luz , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos da radiação , Arabidopsis/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Oxigênio/farmacologia , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Recombinação Genética/genética , Células Sf9 , Transdução de Sinais/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
3.
Front Microbiol ; 15: 1386120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855773

RESUMO

Mining activities, even in arctic regions, create waste materials releasing metals and metalloids, which have an impact on the microorganisms inhabiting their surroundings. Some species can persist in these areas through tolerance to meta(loid)s via, e.g., metabolic transformations. Due to the interaction between microorganisms and meta(loid)s, interest in the investigation of microbial communities and their possible applications (like bioremediation or biomining) has increased. The main goal of the present study was to identify, isolate, and characterize microorganisms, from subarctic mine sites, tolerant to the metalloid antimony (Sb) and the metal copper (Cu). During both summer and winter, samples were collected from Finnish mine sites (site A and B, tailings, and site C, a water-treatment peatland) and environmental parameters were assessed. Microorganisms tolerant to Sb and Cu were successfully enriched under low temperatures (4°C), creating conditions that promoted the growth of aerobic and fermenting metal(loid) tolerating or anaerobic metal(loid) respiring organism. Microbial communities from the environment and Sb/Cu-enriched microorganisms were studied via 16S rRNA amplicon sequencing. Site C had the highest number of taxa and for all sites, an expected loss of biodiversity occurred when enriching the samples, with genera like Prauserella, Pseudomonas or Clostridium increasing their relative abundances and others like Corynebacterium or Kocuria reducing in relative abundance. From enrichments, 65 putative Sb- and Cu-metabolizing microorganisms were isolated, showing growth at 0.1 mM to 10 mM concentrations and 0°C to 40°C temperatures. 16S rRNA gene sequencing of the isolates indicated that most of the putative anaerobically Sb-respiring tolerators were related to the genus Clostridium. This study represents the first isolation, to our knowledge, of putative Sb-metabolizing cold-tolerant microorganisms and contributes to the understanding of metal (loid)-tolerant microbial communities in Arctic mine sites.

4.
ISME J ; 13(2): 388-401, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30254323

RESUMO

Seasonality in marine microorganisms has been classically observed in phytoplankton blooms, and more recently studied at the community level in prokaryotes, but rarely investigated at the scale of individual microbial taxa. Here we test if specific marine eukaryotic phytoplankton, bacterial and archaeal taxa display yearly rhythms at a coastal site impacted by irregular environmental perturbations. Our seven-year study in the Bay of Banyuls (North Western Mediterranean Sea) shows that despite some fluctuating environmental conditions, many microbial taxa displayed significant yearly rhythms. The robust rhythmicity was found in both autotrophs (picoeukaryotes and cyanobacteria) and heterotrophic prokaryotes. Sporadic meteorological events and irregular nutrient supplies did, however, trigger the appearance of less common non-rhythmic taxa. Among the environmental parameters that were measured, the main drivers of rhythmicity were temperature and day length. Seasonal autotrophs may thus be setting the pace for rhythmic heterotrophs. Similar environmental niches may be driving seasonality as well. The observed strong association between Micromonas and SAR11, which both need thiamine precursors for growth, could be a first indication that shared nutritional niches may explain some rhythmic patterns of co-occurrence.


Assuntos
Archaea/genética , Bactérias/classificação , Eucariotos/genética , Água do Mar/microbiologia , Archaea/classificação , Archaea/fisiologia , Bactérias/genética , Ecossistema , Eucariotos/classificação , Mar Mediterrâneo , Fitoplâncton/crescimento & desenvolvimento , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA