Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375315

RESUMO

Currently, the number of patients with neurodegenerative pathologies is estimated at over one million, with consequences also on the economic level. Several factors contribute to their development, including overexpression of A2A adenosine receptors (A2AAR) in microglial cells and up-regulation and post-translational alterations of some casein kinases (CK), among them, CK-1δ. The aim of the work was to study the activity of A2AAR and CK1δ in neurodegeneration using in-house synthesized A2A/CK1δ dual anta-inhibitors and to evaluate their intestinal absorption. Experiments were performed on N13 microglial cells, which were treated with a proinflammatory CK cocktail to simulate an inflammatory state typical of neurodegenerative diseases. Results showed that the dual anta-inhibitors have the ability to counteract the inflammatory state, even if compound 2 is more active than compound 1. In addition, compound 2 displayed an important antioxidant effect similar to the reference compound ZM241385. Since many known kinase inhibitors are very often unable to cross lipid bilayer membranes, the ability of A2A/CK1δ double anta-inhibitors to cross the intestinal barrier was investigated by an everted gut sac assay. HPLC analysis revealed that both compounds are able to cross the intestinal barrier, making them promising candidates for oral therapy.


Assuntos
Caseína Quinase Idelta , Doenças Neurodegenerativas , Humanos , Regulação para Cima , Doenças Neurodegenerativas/tratamento farmacológico , Receptores Purinérgicos P1/metabolismo , Receptor A2A de Adenosina/metabolismo
2.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458588

RESUMO

The A2A adenosine receptor (A2AAR) is one of the four subtypes activated by nucleoside adenosine, and the molecules able to selectively counteract its action are attractive tools for neurodegenerative disorders. In order to find novel A2AAR ligands, two series of compounds based on purine and triazolotriazine scaffolds were synthesized and tested at ARs. Compound 13 was also tested in an in vitro model of neuroinflammation. Some compounds were found to possess high affinity for A2AAR, and it was observed that compound 13 exerted anti-inflammatory properties in microglial cells. Molecular modeling studies results were in good agreement with the binding affinity data and underlined that triazolotriazine and purine scaffolds are interchangeable only when 5- and 2-positions of the triazolotriazine moiety (corresponding to the purine 2- and 8-positions) are substituted.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antagonistas de Receptores Purinérgicos P1 , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Purinas/química , Receptor A2A de Adenosina/metabolismo , Relação Estrutura-Atividade
3.
Molecules ; 26(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672225

RESUMO

Alzheimer's, Parkinson's, and multiple sclerosis are neurodegenerative diseases related by neuronal degeneration and death in specific areas of the central nervous system. These pathologies are associated with neuroinflammation, which is involved in disease progression, and halting this process represents a potential therapeutic strategy. Evidence suggests that microglia function is regulated by A1 and A2A adenosine receptors (AR), which are considered as neuroprotective and neurodegenerative receptors, respectively. The manuscript's aim is to elucidate the role of these receptors in neuroinflammation modulation through potent and selective A1AR agonists (N6-cyclopentyl-2'- or 3'-deoxyadenosine substituted or unsubstituted in 2 position) and A2AAR antagonists (9-ethyl-adenine substituted in 8 and/or in 2 position), synthesized in house, using N13 microglial cells. In addition, the combined therapy of A1AR agonists and A2AAR antagonists to modulate neuroinflammation was evaluated. Results showed that A1AR agonists were able, to varying degrees, to prevent the inflammatory effect induced by cytokine cocktail (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and interferon (IFN)-γ), while A2AAR antagonists showed a good ability to counteract neuroinflammation. Moreover, the effect achieved by combining the two most effective compounds (1 and 6) in doses previously found to be non-effective was greater than the treatment effect of each of the two compounds used separately at maximal dose.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Inflamação/tratamento farmacológico , Receptor A1 de Adenosina/metabolismo , Receptores A2 de Adenosina/metabolismo , Animais , Células Cultivadas , Inflamação/metabolismo , Camundongos
4.
J Neurochem ; 149(2): 211-230, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30614535

RESUMO

Cerebral ischemia is the second most common cause of death and a major cause of disability worldwide. Available therapies are based only on anticoagulants or recombinant tissue plasminogen activator. Extracellular adenosine increases during ischemia and acts as a neuroprotective endogenous agent mainly by activating adenosine A1 receptors (A1 Rs) which control calcium influx, glutamate release, membrane potential, and metabolism. Accordingly, in many experimental paradigms it has been already demonstrated that the stimulation of A1 R with full agonists is able to reduce ischemia-related structural and functional brain damage; unfortunately, cardiovascular side effects and desensitization of A1 R induced by these compounds have strongly limited their exploitation in stroke therapy so far. Among the newly emerging compounds, A1 R partial agonists could be almost free of side effects and equally effective. Therefore, we decided to evaluate the neuroprotective potential of two A1 R partial agonists, namely 2'-dCCPA and 3'-dCCPA, in in vitro and ex vivo experimental models of cerebral ischemia. Within the experimental paradigm of oxygen-glucose deprivation in vitro in human neuroblastoma (SH-SY5Y) cells both A1 R partial agonists increased cell viability. Considering the high level of expression of A1 Rs in the hippocampus and the susceptibility of CA1 region to hypoxia, we performed electrophysiological experiments in this subfield. The application of 7 min of oxygen-glucose deprivation constantly produces an irreversible synaptic failure in all the C57Bl/6 mice hippocampal slices evaluated; both tested compounds allowed a significant recovery of synaptic transmission. These findings demonstrate that A1 R and its partial agonists are still of interest for cerebral ischemia therapy. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Isquemia Encefálica , Fármacos Neuroprotetores/farmacologia , Animais , Hipocampo/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Teóricos , Receptor A1 de Adenosina/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
5.
Bioorg Med Chem ; 27(15): 3328-3333, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31230970

RESUMO

In recent years, special attention has been paid to the A3 adenosine receptor (A3AR) as a possible pharmacological target to treat intestinal inflammation. In this work, it was set up a novel method to quantify the concentration of a promising anti-inflammatory agent inside and outside of intestinal barrier using the everted gut sac technique. The compound chosen for the present study is one of the most potent and selective A3AR agonist reported so far, named AR 170 (N6-methyl-2-phenylethynyl-5'-N-methylcarboxamidoadenosine). In order to evaluate the intestinal absorption of AR 170 the radioligand binding assay in comparison with HPLC-DAD was used. Results showed that the compound is absorbed via passive diffusion by paracellular pathway. The concentrations determined in the serosal (inside the sac) fluid by radioligand binding assay are in good agreement with those obtained through the widely used HPLC/MS protocol, demonstrating the reliability of the method. It is worthwhile to note that the radioligand binding assay allows detecting very low concentrations of analyte, thus offering an excellent tool to measure the intestinal absorption of receptor ligands. Moreover, the AR 170 quantity outside the gut sac and the interaction with A3AR could presuppose good topical anti-inflammatory effects of this compound.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Adenosina/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Receptor A3 de Adenosina/metabolismo , Adenosina/análise , Adenosina/química , Agonistas do Receptor A3 de Adenosina/química , Animais , Anti-Inflamatórios não Esteroides/química , Células CHO , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Mucosa Intestinal/metabolismo , Ligantes , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade
6.
Bioorg Chem ; 92: 103183, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31446240

RESUMO

Adenosine receptor antagonists are generally based on heterocyclic core structures presenting substituents of various volumes and chemical-physical profiles. Adenine and purine-based adenosine receptor antagonists have been reported in literature. In this work we combined various substituents in the 2, 6, and 8-positions of 9-ethylpurine to depict a structure-affinity relationship analysis at the human adenosine receptors. Compounds were rationally designed trough molecular modeling analysis and then synthesized and evaluated at radioligand binding studies at human adenosine receptors. The new compounds showed affinity for the human adenosine receptors, with some derivatives endowed with low nanomolar Ki data, in particular at the A2AAR subtype. The purine core proves to be a versatile core structure for the development of novel adenosine receptor antagonists with nanomolar affinity for these membrane proteins.


Assuntos
Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/metabolismo , Purinas/síntese química , Purinas/metabolismo , Receptor A2A de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Cricetulus , Humanos , Ligantes , Masculino , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Ensaio Radioligante , Ratos Wistar , Relação Estrutura-Atividade
7.
Purinergic Signal ; 13(1): 61-74, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27757785

RESUMO

Blocking membrane currents evoked by the activation of purinergic P2X3 receptors localized on nociceptive neurons represents a promising strategy for the development of agents useful for the treatment of chronic pain conditions. Among compounds endowed with such antagonistic action, 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) is an ATP analogue, whose inhibitory activity on P2X receptors has been previously reported. Based on the results of molecular modelling studies performed with homology models of the P2X3 receptor, novel adenosine nucleotide analogues bearing cycloalkyl or arylalkyl substituents replacing the trinitrophenyl moiety of TNP-ATP were designed and synthesized. These new compounds were functionally evaluated on native P2X3 receptors from mouse trigeminal ganglion (TG) sensory neurons using patch clamp recordings under voltage clamp configuration. Our data show that some of these molecules are potent (nanomolar range) and reversible inhibitors of P2X3 receptors, without any apparent effect on trigeminal GABAA and 5-HT3 receptors, whose membrane currents were unaffected by the tested compounds.


Assuntos
Analgésicos/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Animais , Camundongos , Modelos Moleculares , Técnicas de Patch-Clamp , Células Receptoras Sensoriais/metabolismo
8.
Med Sci Monit ; 23: 953-959, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28223679

RESUMO

GPR17 is believed to be a novel target for the development of new therapeutic approaches to human stroke and multiple sclerosis. Hence, the selection of GPR17 ligands may be a potent way to reduce the progression of ischemic damage. New potential ligands for GPR17, mono-, di-, and triphosphate adenosine nucleotides substituted at N6-position with a methyl and a cyclopentyl group were synthesized. The ability of new ligands to bind GPR17 was evaluated using frontal affinity chromatography-mass spectrometry (FAC-MS) method. Cangrelor, MRS2179, and uridine diphosphate were selected as the reference compounds. The new triphosphate derivatives 9 and 10 were considered as the new GPR17 ligands. The compound 10 was eluted with breakthrough time (bt) between cangrelor and MRS 2179 (compound 10, bt=12.25; cangrelor, bt=24.55, and MRS 2179, bt=7.10), while the breakthrough volume of compound 9 was similar to that of MRS 2179 (compound 9, bt=7.53 and MRS 2179, bt=7.10). N6-cyclopentyATP 10 is medium-high affinity ligand of GPR17, while the corresponding N6-methyl derivative 9 is a medium affinity ligand similar to MRS 2179. Hence, the new N6-cyclopentylATP 10 might be a good candidate for the pharmacological characterization of GPR17.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/síntese química , Difosfato de Adenosina/química , Difosfato de Adenosina/farmacologia , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Sítios de Ligação , Cromatografia de Afinidade , Humanos , Proteínas Imobilizadas/química , Ligantes , Modelos Moleculares , Ligação Proteica , Receptores Acoplados a Proteínas G/biossíntese
9.
Bioorg Med Chem ; 24(12): 2794-808, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27161878

RESUMO

A new series of 7-aminopyrazolo[4,3-d]pyrimidine derivatives (1-31) were synthesized to evaluate some structural modifications at the 2- and 5-positions aimed at shifting affinity towards the human (h) A2A adenosine receptor (AR) or both hA2A and hA1 ARs. The most active compounds were those featured by a 2-furyl or 5-methylfuran-2-yl moiety at position 5, combined with a benzyl or a substituted-benzyl group at position 2. Several of these derivatives (22-31) displayed nanomolar affinity for the hA2A AR (Ki=3.62-57nM) and slightly lower for the hA1 ARs, thus showing different degrees (3-22 fold) of hA2A versus hA1 selectivity. In particular, the 2-(2-methoxybenzyl)-5-(5-methylfuran-2-yl) derivative 25 possessed the highest hA2A and hA1 AR affinities (Ki=3.62nM and 18nM, respectively) and behaved as potent antagonist at both these receptors (cAMP assays). Its 2-(2-hydroxybenzyl) analog 26 also showed a high affinity for the hA2A AR (Ki=5.26nM) and was 22-fold selective versus the hA1 subtype. Molecular docking investigations performed at the hA2A AR crystal structure and at a homology model of the hA1 AR allowed us to represent the hypothetical binding mode of our derivatives and to rationalize the observed SARs.


Assuntos
Antagonistas de Receptores Purinérgicos P1/química , Antagonistas de Receptores Purinérgicos P1/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Aminação , Humanos , Simulação de Acoplamento Molecular , Pirazóis/química , Pirazóis/farmacologia
10.
Chembiochem ; 15(15): 2255-8, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25158283

RESUMO

The templating potential of anhydrohexitol oligonucleotides bearing ambiguous bases was studied in vivo, by using a selection screen for mosaic heteroduplex plasmids in Escherichia coli. 1,5-Anhydro-2,3-dideoxy-2-(5-nitroindazol-1-yl)-D-arabino-hexitol showed the greatest ambiguity among the three nucleosides tested. At most two successive ambiguous bases could be tolerated on hexitol templates read in bacterial cells. Hexitol nucleosides bearing simplified heterocycles thus stand as promising monomers for generating random DNA sequences in vivo from defined synthetic oligonucleotides.


Assuntos
Pareamento de Bases , Ácidos Nucleicos/genética , Oligonucleotídeos/química , Álcoois Açúcares/química , Transformação Genética/genética , Estrutura Molecular , Ácidos Nucleicos/química , Oligonucleotídeos/síntese química , Moldes Genéticos
11.
ScientificWorldJournal ; 2014: 264829, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24967427

RESUMO

The anticancer activity of isofuranodiene, extracted from Smyrnium olusatrum, was evaluated in human breast adenocarcinomas MDA-MB 231 and BT 474, and Caucasian prostate adenocarcinoma PC 3 cell lines by MTS assay. MTS assay showed a dose-dependent growth inhibition in the tumor cell lines after isofuranodiene treatment. The best antiproliferative activity of the isofuranodiene was found on PC 3 cells with an IC50 value of 29 µM, which was slightly less than the inhibition against the two breast adenocarcinoma cell lines with IC50 values of 59 and 55 µM on MDA-MB 231 and BT 474, respectively. Hoechst 33258 assay was performed in order to study the growth inhibition mechanism in prostate cancer cell line; the results indicate that isofuranodiene induces apoptosis. Overall, the understudy compound has a good anticancer activity especially towards the PC 3. On the contrary, it is less active on Chinese hamster ovary cells (CHO) and human embryonic kidney (HEK 293) appearing as a good candidate as a potential natural anticancer drug with low side effects.


Assuntos
Antineoplásicos/farmacologia , Furanos/farmacologia , Antineoplásicos/química , Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Furanos/química , Humanos , Masculino , Neoplasias da Próstata , Fatores de Tempo
12.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675428

RESUMO

Protein kinase CK1δ (CK1δ) is a serine-threonine/kinase that modulates different physiological processes, including the cell cycle, DNA repair, and apoptosis. CK1δ overexpression, and the consequent hyperphosphorylation of specific proteins, can lead to sleep disorders, cancer, and neurodegenerative diseases. CK1δ inhibitors showed anticancer properties as well as neuroprotective effects in cellular and animal models of Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis. To obtain new ATP-competitive CK1δ inhibitors, three sets of benzimidazole-2-amino derivatives were synthesized (1-32), bearing different substituents on the fused benzo ring (R) and diverse pyrazole-containing acyl moieties on the 2-amino group. The best-performing derivatives were those featuring the (1H-pyrazol-3-yl)-acetyl moiety on the benzimidazol-2-amino scaffold (13-32), which showed CK1δ inhibitor activity in the low micromolar range. Among the R substituents, 5-cyano was the most advantageous, leading to a compound endowed with nanomolar potency (23, IC50 = 98.6 nM). Molecular docking and dynamics studies were performed to point out the inhibitor-kinase interactions.

13.
Bioorg Med Chem ; 21(1): 283-94, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23171656

RESUMO

A number of 5-oxo-pyrazolo[1,5-c]quinazolines (series B-1), bearing at position-2 the claimed (hetero)aryl moiety (compounds 1-8) but also a carboxylate group (9-14), were designed as hA(3) AR antagonists. This study produced some interesting compounds endowed with good hA(3) receptor affinity and high selectivity, being totally inactive at all the other AR subtypes. In contrast, the corresponding 5-ammino derivatives (series B-2) do not bind or bind with very low affinity at the hA(3) AR, the only exception being the 5-N-benzoyl compound 19 that shows a hA(3)K(i) value in the high µ-molar range. Evaluation of the synthetic intermediates led to the identification of some 5(3)-(2-aminophenyl)-3(5)-(hetero)arylpyrazoles 20-24 with modest affinity but high selectivity toward the hA(3) AR subtype. Molecular docking of the herein reported tricyclic and simplified derivatives was carried out to depict their hypothetical binding mode to our model of hA(3) receptor.


Assuntos
Antagonistas de Receptores Purinérgicos P1/química , Antagonistas de Receptores Purinérgicos P1/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Receptor A3 de Adenosina/metabolismo , Animais , Células CHO , Cricetinae , Humanos , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
14.
Anal Bioanal Chem ; 405(2-3): 837-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22960794

RESUMO

A liquid chromatographic stationary phase containing immobilized membranes from cells expressing A(2A) adenosine receptor (A(2A)AR) is firstly described. Cellular membranes from CHO cells stably transfected with human A(2A)AR vector (A(2A)(+)) and from the same cell line transfected with the corresponding empty vector (A(2A)(-)) were entrapped on immobilized artificial membrane (IAM) support and packed into 6.6 mm I.D. glass columns to create A(2A)(+)-IAM and A(2A)(-)-IAM stationary phases. Frontal chromatography experiments on both A(2A)(+)-IAM and A(2A)(-)-IAM columns demonstrated the presence of a low specific interaction with the receptor. However, immobilized A(2A) retained its ability to specifically bind known ligands as demonstrated by the agreement of the calculated K(d) values with two different chromatographic protocols in comparison to previously reported data. In order to maximize the specific interaction, the same cellular membranes were immobilized on the inner surface of a silica capillary (40 cm × 100 µm I.D.) by non-covalent interactions using the avidin-biotin coupling system to create two open tubular columns A(2A)(+)-OT and A(2A)(-)-OT. The open tubular system was characterized by ranking experiments for affinity studies in mixture useful for the selection of new potential candidates.


Assuntos
Cromatografia de Afinidade/instrumentação , Receptor A2A de Adenosina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Células CHO , Cromatografia de Afinidade/métodos , Cricetinae , Humanos , Cinética , Ligantes , Espectrometria de Massas por Ionização por Electrospray/instrumentação
15.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37259317

RESUMO

Based on a screening of a chemical library of A2A adenosine receptor (AR) antagonists, a series of di- and tri-substituted adenine derivatives were synthesized and tested for their ability to inhibit the activity of the enzyme casein kinase 1 delta (CK1δ) and to bind adenosine receptors (ARs). Some derivatives, here called "dual anta-inhibitors", demonstrated good CK1δ inhibitory activity combined with a high binding affinity, especially for the A2AAR. The N6-methyl-(2-benzimidazolyl)-2-dimethyamino-9-cyclopentyladenine (17, IC50 = 0.59 µM and KiA2A = 0.076 µM) showed the best balance of A2AAR affinity and CK1δ inhibitory activity. Computational studies were performed to simulate, at the molecular level, the protein-ligand interactions involving the compounds of our series. Hence, the dual anta-inhibitor 17 could be considered the lead compound of new therapeutic agents endowed with synergistic effects for the treatment of chronic neurodegenerative and cancer diseases.

16.
Behav Pharmacol ; 23(5-6): 567-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22743606

RESUMO

The present study examined the effect of two A(2A) adenosine receptor (AR) agonists, CGS 21680 and VT 7, on high-palatability food (HPF) intake in a model of binge eating in sated rats and on low-palatability food (LPF) intake in food-deprived rats. Binge eating was induced in female rats by three 8-day cycles of food restriction/refeeding, followed by acute stress. Two groups of rats were used: NR+NS rats normally fed and not stressed and R+S rats exposed to cycles of food restriction/refeeding and then stressed. R+S rats had higher intake of HPF than the NR+NS controls. The two A(2A)AR agonists were tested at doses of 0.1 and 0.05 mg/kg intraperitoneally; VT 7 did not modify locomotor activity at either dose, whereas CGS 21680 only slightly reduced it at the higher dose tested. The injection of 0.1 mg/kg of both agonists markedly reduced HPF intake both in R+S and in NR+NS rats. The dose of 0.05 mg/kg was inactive. CGS 21680 and VT 7, 0.1 mg/kg, also reduced the standard LPF intake in 24 h food-deprived rats; however, they did not reduce water intake, indicating that their effect on food intake is selective. The dose of 0.05 mg/kg was inactive. Thus, A(2A)AR agonists exert a rather general effect on food intake, inhibiting both HPF intake in sated rats and LPF intake in food-deprived rats. They may potentially be useful pharmacological agents to control binge-related eating disorders and to reduce food overconsumption associated with obesity.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Adenosina/análogos & derivados , Depressores do Apetite/uso terapêutico , Transtorno da Compulsão Alimentar/tratamento farmacológico , Comportamento Alimentar/efeitos dos fármacos , Fenetilaminas/uso terapêutico , Receptor A2A de Adenosina/metabolismo , Tionucleosídeos/uso terapêutico , Adenosina/administração & dosagem , Adenosina/uso terapêutico , Agonistas do Receptor A2 de Adenosina/administração & dosagem , Animais , Depressores do Apetite/administração & dosagem , Regulação do Apetite/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Ingestão de Energia/efeitos dos fármacos , Feminino , Preferências Alimentares , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fenetilaminas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/química , Resposta de Saciedade/efeitos dos fármacos , Tionucleosídeos/administração & dosagem
17.
Proc Natl Acad Sci U S A ; 106(37): 15927-31, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19721003

RESUMO

We previously found that the endogenous anticonvulsant adenosine, acting through A(2A) and A(3) adenosine receptors (ARs), alters the stability of currents (I(GABA)) generated by GABA(A) receptors expressed in the epileptic human mesial temporal lobe (MTLE). Here we examined whether ARs alter the stability (desensitization) of I(GABA) expressed in focal cortical dysplasia (FCD) and in periglioma epileptic tissues. The experiments were performed with tissues from 23 patients, using voltage-clamp recordings in Xenopus oocytes microinjected with membranes isolated from human MTLE and FCD tissues or using patch-clamp recordings of pyramidal neurons in epileptic tissue slices. On repetitive activation, the epileptic GABA(A) receptors revealed instability, manifested by a large I(GABA) rundown, which in most of the oocytes (approximately 70%) was obviously impaired by the new A(2A) antagonists ANR82, ANR94, and ANR152. In most MTLE tissue-microtransplanted oocytes, a new A(3) receptor antagonist (ANR235) significantly improved I(GABA) stability. Moreover, patch-clamped pyramidal neurons from human neocortical slices of periglioma epileptic tissues exhibited altered I(GABA) rundown on ANR94 treatment. Our findings indicate that antagonizing A(2A) and A(3) receptors increases the I(GABA) stability in different epileptic tissues and suggest that adenosine derivatives may offer therapeutic opportunities in various forms of human epilepsy.


Assuntos
Receptor A2A de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores de GABA-A/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Antagonistas do Receptor A2 de Adenosina , Antagonistas do Receptor A3 de Adenosina , Animais , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , Feminino , Humanos , Técnicas In Vitro , Malformações do Desenvolvimento Cortical/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Xenopus laevis
18.
Curr Med Chem ; 29(27): 4698-4737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35232339

RESUMO

Casein kinase 1 (CK1) belongs to the serine-threonine kinase family and is expressed in all eukaryotic organisms. At least six human isoforms of CK1 (termed α, γ1-3, δ and ε) have been cloned and characterized. CK1δ isoform modulates several physiological processes, including DNA damage repair, circadian rhythm, cellular proliferation and apoptosis. Therefore, CK1δ dysfunction may trigger diverse pathologies, such as cancer, inflammation and central nervous system disorders. Overexpression and aberrant activity of CK1δ have been connected to hyperphosphorylation of key proteins implicated in the development of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases and Amyotrophic Lateral Sclerosis. Thus, CK1δ inhibitors have attracted attention as potential drugs for these pathologies and several compounds have been synthesized or isolated from natural sources to be evaluated for their CK1δ inhibitory activity. Here we report a comprehensive review on the development of CK1δ inhibitors, with a particular emphasis on structure-activity relationships and computational studies, which provide useful insight for the design of novel inhibitors.


Assuntos
Caseína Quinase Idelta , Doenças Neurodegenerativas , Caseína Quinase I/metabolismo , Caseína Quinase Idelta/genética , Caseína Quinase Idelta/metabolismo , Ritmo Circadiano/fisiologia , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Isoformas de Proteínas
19.
Expert Opin Ther Pat ; 32(6): 689-712, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35387537

RESUMO

INTRODUCTION: A2B adenosine receptor (A2BAR) plays a crucial role in pathophysiologic conditions associated with high adenosine release, typical of airway inflammatory pathologies, gastrointestinal disorders, cancer, asthma, type 2 diabetes, and atherosclerosis. In some pathologies, simultaneous inactivation of A2A and A2BARs is desirable to have a synergism of action that leads to a greater efficacy of the pharmacological treatment and less side effects due to the dose of drug administered. In this context, it is strongly required to identify molecules capable of selectively antagonizing A2BAR or A2A/A2BARs. AREAS COVERED: The review provides a summary of patents, published from 2016 to present, on chemicals and their clinical use. In this paper, information on the biological activity of representative structures of recently developed A2B or A2A/A2B receptor ligands is reported. EXPERT OPINION: Among the four P1 receptors, A2BAR is the most inscrutable and the least studied until a few years ago, but its involvement in various inflammatory pathologies has recently made it a pharmacological target of high interest. Many efforts by the academy and pharmaceutical companies have been made to discover potential A2BAR and A2A/A2BARs drugs. Although several compounds have been synthesized only a few molecules have entered clinical trials.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor A2B de Adenosina , Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Patentes como Assunto , Receptor A2B de Adenosina/química , Receptor A2B de Adenosina/fisiologia , Transdução de Sinais
20.
Curr Med Chem ; 29(28): 4780-4795, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184706

RESUMO

Endogenous nucleoside adenosine modulates a number of physiological effects through interaction with P1 purinergic receptors. All of them are G protein-coupled receptors, and, to date, four subtypes have been characterized and named A1, A2A, A2B, and A3. In recent years, adenosine receptors, particularly the A2A subtype, have become attractive targets for the treatment of several neurodegenerative disorders, known to involve neuroinflammation, like Parkinson's and Alzheimer's diseases, multiple sclerosis, and neuropsychiatric conditions. In fact, it has been demonstrated that inhibition of A2A adenosine receptors exerts neuroprotective effects counteracting neuroinflammatory processes and astroglial and microglial activation. The A2A adenosine receptor antagonist istradefylline, developed by Kyowa Hakko Kirin Inc., was approved in Japan as adjunctive therapy for the treatment of Parkinson's disease, and very recently, it was also approved by the US Food and Drug Administration. These findings pave the way for new therapeutic opportunities, so, in this review, a summary of the most relevant and promising A2A adenosine receptor antagonists will be presented along with their preclinical and clinical studies in neuroinflammation related diseases.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Adenosina/uso terapêutico , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Receptor A2A de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA