Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Biol Chem ; 298(12): 102689, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370844

RESUMO

ATP-binding cassette (ABC) multidrug transporters are large, polytopic membrane proteins that exhibit astonishing promiscuity for their transport substrates. These transporters unidirectionally efflux thousands of structurally and functionally distinct compounds. To preclude the reentry of xenobiotic molecules via the drug-binding pocket, these proteins contain a highly conserved molecular gate, essentially allowing the transporters to function as molecular diodes. However, the structure-function relationship of these conserved gates and gating regions are not well characterized. In this study, we combine recent single-molecule, cryo-EM data with genetic and biochemical analyses of residues in the gating region of the yeast multidrug transporter Pdr5, the founding member of a large group of clinically relevant asymmetric ABC efflux pumps. Unlike the symmetric ABCG2 efflux gate, the Pdr5 counterpart is highly asymmetric, with only four (instead of six) residues comprising the gate proper. However, other residues in the near vicinity are essential for the gating activity. Furthermore, we demonstrate that residues in the gate and in the gating regions have multiple functions. For example, we show that Ile-685 and Val-1372 are required not only for successful efflux but also for allosteric inhibition of Pdr5 ATPase activity. Our investigations reveal that the gating region residues of Pdr5, and possibly other ABCG transporters, play a role not only in molecular gating but also in allosteric regulation, conformational switching, and protein folding.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Proteínas de Saccharomyces cerevisiae , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Antimicrob Agents Chemother ; 66(1): e0174821, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34780272

RESUMO

Overexpression of ATP-binding cassette (ABC) transporters is a major cause of drug resistance in fungal pathogens. Milbemycins, enniatin B, beauvericin, and FK506 are promising leads for broad-spectrum fungal multidrug efflux pump inhibitors. The characterization of naturally generated inhibitor-resistant mutants is a powerful tool to elucidate structure-activity relationships in ABC transporters. We isolated 20 Saccharomyces cerevisiae mutants overexpressing Candida albicans ABC pump Cdr1 variants resistant to fluconazole efflux inhibition by milbemycin α25 (8 mutants), enniatin B (8), or beauvericin (4). The 20 mutations were in just 9 residues at the centers of transmembrane segment 1 (TMS1) (6 mutations), TMS4 (4), TMS5 (4), TMS8 (1), and TMS11 (2) and in A713P (3), a previously reported FK506-resistant "hot spot 1" mutation in extracellular loop 3. Six Cdr1-G521S/C/V/R (TMS1) variants were resistant to all four inhibitors, four Cdr1-M639I (TMS4) variants were resistant to milbemycin α25 and enniatin B, and two Cdr1-V668I/D (TMS5) variants were resistant to enniatin B and beauvericin. The eight milbemycin α25-resistant mutants were altered in four amino acids as follows: G521R, M639I, A713P, and T1355N (TMS11). These four Cdr1 variants responded differently to various types of inhibitors, and each exhibited altered substrate specificity and kinetic properties. The data infer an entry gate function for Cdr1-G521 and a role for Cdr1-A713 in the constitutively high Cdr1 ATPase activity. Cdr1-M639I and -T1355N possibly cause inhibitor resistance by altering TMS contacts near the substrate/inhibitor-binding pocket. Models for the interactions of substrates and different types of inhibitors with Cdr1 at various stages of the transport cycle are presented.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Candida albicans , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/metabolismo , Farmacorresistência Fúngica/genética , Fluconazol/metabolismo , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Especificidade por Substrato
4.
Artigo em Inglês | MEDLINE | ID: mdl-30348662

RESUMO

The 23-membered-ring macrolide tacrolimus, a commonly used immunosuppressant, also known as FK506, is a broad-spectrum inhibitor and an efflux pump substrate of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters. Little, however, is known about the molecular mechanism by which FK506 inhibits PDR transporter drug efflux. Thus, to obtain further insights we searched for FK506-resistant mutants of Saccharomyces cerevisiae cells overexpressing either the endogenous multidrug efflux pump Pdr5 or its Candida albicans orthologue, Cdr1. A simple but powerful screen gave 69 FK506-resistant mutants with, between them, 72 mutations in either Pdr5 or Cdr1. Twenty mutations were in just three Pdr5/Cdr1 equivalent amino acid positions, T550/T540 and T552/S542 of extracellular loop 1 (EL1) and A723/A713 of EL3. Sixty of the 72 mutations were either in the ELs or the extracellular halves of individual transmembrane spans (TMSs), while 11 mutations were found near the center of individual TMSs, mostly in predicted TMS-TMS contact points, and only two mutations were in the cytosolic nucleotide-binding domains of Pdr5. We propose that FK506 inhibits Pdr5 and Cdr1 drug efflux by slowing transporter opening and/or substrate release, and that FK506 resistance of Pdr5/Cdr1 drug efflux is achieved by modifying critical intramolecular contact points that, when mutated, enable the cotransport of FK506 with other pump substrates. This may also explain why the 35 Cdr1 mutations that caused FK506 insensitivity of fluconazole efflux differed from the 13 Cdr1 mutations that caused FK506 insensitivity of cycloheximide efflux.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antifúngicos/farmacologia , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tacrolimo/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Candida albicans/efeitos dos fármacos , Depsipeptídeos/farmacologia , Farmacorresistência Fúngica/genética , Saccharomyces cerevisiae/efeitos dos fármacos
5.
FEMS Yeast Res ; 16(4)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27188883

RESUMO

The edible, nitrate assimilating, yeast Candida utilis is a commercial food additive, and it is a potentially useful host for heterologous protein expression. A number of ATP-binding cassette (ABC) transporters are multidrug efflux pumps that can cause multidrug resistance in opportunistic pathogens. In order to develop optimal novel antimicrobial agents it is imperative to understand the structure, function and expression of these transporters. With the ultimate aim of developing an alternative yeast host for the heterologous expression of eukaryotic membrane transporters, and to identify ABC transporters potentially associated with C. utilis multidrug resistance, we classified the entire repertoire of 30 C. utilis ABC proteins. We named the open reading frame most similar to the archetype multidrug efflux pump gene C. albicans CDR1 as CuCDR1 Overexpression of CuCDR1 in Saccharomyces cerevisiae ADΔ caused multidrug resistance similar to that of cells overexpressing CaCDR1 Unlike CaCdr1p, however, the C-terminally green fluorescent protein (GFP) tagged CuCdr1p-GFP was functionally impaired and did not properly localize to the plasma membrane. CuCdr1p function could be recovered however by adding a 15 amino acid linker -GAGGSAGGSGGAGAG- between CuCdr1p and the C-terminal GFP tag.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Candida/genética , Candida/metabolismo , Antifúngicos/farmacologia , Clonagem Molecular , Farmacorresistência Fúngica Múltipla , Expressão Gênica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Med Mycol ; 54(5): 478-91, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26782644

RESUMO

Penicilliosis caused by the dimorphic fungus Penicillium marneffei is an endemic, AIDS-defining illness and, after tuberculosis and cryptococcosis, the third most common opportunistic infection of AIDS patients in tropical Southeast Asia. Untreated, patients have poor prognosis; however, primary amphotericin B treatment followed by prolonged itraconazole prophylaxis is effective. To identify ATP-binding cassette (ABC) transporters that may play a role in potential multidrug resistance of P. marneffei, we identified and classified all 46 P. marneffei ABC transporters from the genome sequence. PmABC1 and PmABC2 were most similar to the archetype Candida albicans multidrug efflux pump gene CDR1. P. marneffei Abc1p (PmAbc1p) was functionally expressed in Saccharomyces cerevisiae, although at rather low levels, and correctly localized to the plasma membrane, causing cells to be fourfold to eightfold more resistant to azoles and many other xenobiotics than untransformed cells. P. marneffei Abc2p (PmAbc2p) was expressed at similarly low levels, but it had no efflux activity and did not properly localize to the plasma membrane. Interestingly, PmAbc1p mislocalized and lost its transport activity when cells were shifted to 37 °C. We conclude that expression of PmAbc1p in S. cerevisiae confers resistance to several xenobiotics indicating that PmAbc1p may be a multidrug efflux pump.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Penicillium/genética , Penicillium/metabolismo , Sudeste Asiático , Clonagem Molecular , Expressão Gênica , Genoma Fúngico , Humanos , Penicillium/isolamento & purificação , Transporte Proteico , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
7.
Mol Pharm ; 11(10): 3452-62, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25115303

RESUMO

ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-ß mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Melanoma/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Clorgilina/farmacologia , Daunorrubicina/farmacologia , Humanos , Rodamina 123/farmacologia , Rodaminas/farmacologia , Saccharomyces cerevisiae/genética , Tacrolimo/farmacologia
8.
Mol Microbiol ; 85(4): 747-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22788839

RESUMO

Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~1.89 × 10(6) member D-octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the D-octapeptide D-NH(2) -FFKWQRRR-CONH(2) , as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization-resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin ß9 have modes of action similar to RC21v3.


Assuntos
Candida albicans/enzimologia , Inibidores Enzimáticos/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oligopeptídeos/metabolismo , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Supressão Genética
9.
Microb Cell Fact ; 12: 74, 2013 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-23895661

RESUMO

BACKGROUND: A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). RESULTS: Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited Cdr1p expression by ~50%. CONCLUSION: We have developed a simple cloning strategy to fine-tune protein expression levels in yeast that has many potential applications in metabolic engineering and the optimization of protein expression in yeast. This study also highlights the importance of considering the use of multiple cloning-sites carefully to preclude unwanted effects on gene expression.


Assuntos
RNA Mensageiro/biossíntese , Saccharomyces cerevisiae/metabolismo , Regiões 5' não Traduzidas , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Pareamento de Bases , Candida albicans/metabolismo , Clonagem Molecular , Códon de Iniciação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Engenharia Metabólica , Conformação de Ácido Nucleico , RNA Mensageiro/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica
10.
Mol Microbiol ; 82(2): 416-33, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21895791

RESUMO

Members of the pleiotropic drug resistance (PDR) family of ATP binding cassette (ABC) transporters consist of two homologous halves, each containing a nucleotide binding domain (NBD) and a transmembrane domain (TMD). The PDR transporters efflux a variety of hydrophobic xenobiotics and despite the frequent association of their overexpression with the multidrug resistance of fungal pathogens, the transport mechanism of these transporters is poorly understood. Twenty-eight chimeric constructs between Candida albicans Cdr1p (CaCdr1p) and Cdr2p (CaCdr2p), two closely related but functionally distinguishable PDR transporters, were expressed in Saccharomyces cerevisiae. All chimeras expressed equally well, localized properly at the plasma membrane, retained their transport ability, but their substrate and inhibitor specificities differed significantly between individual constructs. A detailed characterization of these proteins revealed structural features that contribute to their substrate specificities and their transport mechanism. It appears that most transmembrane spans of CaCdr1p and CaCdr2p provide or affect multiple, probably overlapping, substrate and inhibitor binding site(s) similar to mammalian ABC transporters. The NBDs, in particular NBD1 and/or the ∼150 amino acids N-terminal to NBD1, can also modulate the substrate specificities of CaCdr1p and CaCdr2p.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Candida albicans/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Transporte Biológico , Candida albicans/química , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
Antimicrob Agents Chemother ; 56(3): 1508-15, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22203607

RESUMO

Resistance to the commonly used azole antifungal fluconazole (FLC) can develop due to overexpression of ATP-binding cassette (ABC) and major facilitator superfamily (MFS) plasma membrane transporters. An approach to overcoming this resistance is to identify inhibitors of these efflux pumps. We have developed a pump assay suitable for high-throughput screening (HTS) that uses recombinant Saccharomyces cerevisiae strains hyperexpressing individual transporters from the opportunistic fungal pathogen Candida albicans. The recombinant strains possess greater resistance to azoles and other pump substrates than the parental host strain. A flow cytometry-based HTS, which measured increased intracellular retention of the fluorescent pump substrate rhodamine 6G (R6G) within yeast cells, was used to screen the Prestwick Chemical Library (PCL) of 1,200 marketed drugs. Nine compounds were identified as hits, and the monoamine oxidase A inhibitor (MAOI) clorgyline was identified as an inhibitor of two C. albicans ABC efflux pumps, CaCdr1p and CaCdr2p. Secondary in vitro assays confirmed inhibition of pump-mediated efflux by clorgyline. Clorgyline also reversed the FLC resistance of S. cerevisiae strains expressing other individual fungal ABC transporters (Candida glabrata Cdr1p or Candida krusei Abc1p) or the C. albicans MFS transporter Mdr1p. Recombinant strains were also chemosensitized by clorgyline to other azoles (itraconazole and miconazole). Importantly, clorgyline showed synergy with FLC against FLC-resistant C. albicans clinical isolates and a C. glabrata strain and inhibited R6G efflux from a FLC-resistant C. albicans clinical isolate. Clorgyline is a novel broad-spectrum inhibitor of two classes of fungal efflux pumps that acts synergistically with azoles against azole-resistant C. albicans and C. glabrata strains.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antifúngicos/farmacologia , Candida albicans/genética , Candida glabrata/genética , Clorgilina/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Candida albicans/enzimologia , Candida albicans/isolamento & purificação , Candida glabrata/enzimologia , Candida glabrata/isolamento & purificação , Farmacorresistência Fúngica , Sinergismo Farmacológico , Citometria de Fluxo , Fluconazol/farmacologia , Corantes Fluorescentes , Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Organismos Geneticamente Modificados , Rodaminas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas
12.
J Fungi (Basel) ; 8(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36294635

RESUMO

Fusarium keratoplasticum is the Fusarium species most commonly associated with human infections (fusariosis). Antifungal treatment of fusariosis is often hampered by limited treatment options due to resistance towards azole antifungals. The mechanisms of antifungal resistance and sterol biosynthesis in fusaria are poorly understood. Therefore, in this study we assessed the transcriptional response of F. keratoplasticum when exposed to voriconazole. Our results revealed a group of dramatically upregulated ergosterol biosynthesis gene duplicates, most notably erg6A (912-fold), cyp51A (52-fold) and ebp1 (20-fold), which are likely part of an alternative ergosterol biosynthesis salvage pathway. The presence of human cholesterol biosynthesis gene homologs in F. keratoplasticum (ebp1, dhcr7 and dhcr24_1, dhcr24_2 and dhcr24_3) suggests that additional sterol biosynthesis pathways may be induced in fusaria under other growth conditions or during host invasion. Voriconazole also induced the expression of a number of ABC efflux pumps. Further investigations suggested that the highly conserved master regulator of ergosterol biosynthesis, FkSR, and the pleiotropic drug resistance network that induces zinc-cluster transcription factor FkAtrR coordinate the response of FSSC species to azole antifungal exposure. In-depth genome mining also helped clarify the ergosterol biosynthesis pathways of moulds and provided a better understanding of antifungal drug resistance mechanisms in fusaria.

13.
J Fungi (Basel) ; 8(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012833

RESUMO

Fusarium infections in humans (fusariosis) and in economically important plants involve species of several Fusarium species complexes. Species of the Fusarium solani species complex (FSSC) are the most frequent cause of human fusariosis. The FSSC comprises more than 60 closely related species that can be separated into three major clades by multi-locus sequence typing (MLST) using translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II (RPB2) DNA sequences. The MLST nomenclature for clade 3 of the FSSC assigns numbers to species types (e.g., FSSC 2) and lowercase letters to identify unique haplotypes. The aim of this study was to analyse the genotypic and phenotypic characteristics of 15 environmental and 15 clinical FSSC isolates from Malaysia. MLST was used for the genotypic characterisation of FSSC isolates from various locations within Malaysia, which was complemented by their morphological characterisation on potato dextrose and carnation leaf agar. MLST identified eight different FSSC species: thirteen Fusarium keratoplasticum (i.e., FSSC 2), six Fusarium suttonianum (FSSC 20), five Fusarium falciforme (FSSC 3+4), two Fusarium cyanescens (FSSC 27), and one each of Fusarium petroliphilum (FSSC 1), Fusarium waltergamsii (FSSC 7), Fusarium sp. (FSSC 12), and Fusarium striatum (FSSC 21). Consistent with previous reports from Malaysia, most (11 of 15) clinical FSSC isolates were F. keratoplasticum and the majority (9 of 15) of environmental isolates were F. suttonianum (5) or F. falciforme (4) strains. The taxonomic relationships of the isolates were resolved phylogenetically. The eight Fusarium species also showed distinct morphological characteristics, but these were less clearly defined and reached across species boundaries. Although TEF1-α and RPB2 sequences were sufficient for the species identification of most FSSC isolates, a more precise MLST scheme needs to be established to reliably assign individual isolates of the species-rich FSSC to their geographically-, epidemiologically-, and host-associated sub-lineages.

14.
Clin Microbiol Rev ; 22(2): 291-321, Table of Contents, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19366916

RESUMO

Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps.


Assuntos
Antifúngicos/metabolismo , Antifúngicos/farmacologia , Farmacorresistência Fúngica/fisiologia , Fungos/efeitos dos fármacos , Fungos/metabolismo , Micoses , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Micoses/diagnóstico , Micoses/tratamento farmacológico , Micoses/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
mSphere ; 6(1)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568458

RESUMO

Pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG family are eukaryotic membrane proteins that pump an array of compounds across organelle and cell membranes. Overexpression of the archetype fungal PDR transporter Cdr1 is a major cause of azole antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR transporter has been solved. The objective of this project was to investigate the role of the 23 Cdr1 cysteine residues in the stability, trafficking, and function of the protein when expressed in the eukaryotic model organism, Saccharomyces cerevisiae The biochemical characterization of 18 partially cysteine-deficient Cdr1 variants revealed that the six conserved extracellular cysteines were critical for proper expression, localization, and function of Cdr1. They are predicted to form three covalent disulfide bonds that stabilize the large extracellular domains of fungal PDR transporters. Our investigations also revealed a novel nucleotide-binding domain motif, GX2[3]CPX3NPAD/E, at the peripheral cytosolic apex of ABCG transporters that possibly contributes to the unique ABCG transport cycle. With this knowledge, we engineered an "almost cysteine-less," yet fully functional, Cdr1 variant, Cdr1P-CID, that had all but the six extracellular cysteines replaced with serine, alanine, or isoleucine (C1106I of the new motif). It is now possible to perform cysteine-cross-linking studies that will enable more detailed biochemical investigations of fungal PDR transporters and confirm any future structure(s) solved for this important protein family.IMPORTANCE Overexpression of the fungal pleiotropic drug resistance (PDR) transporter Cdr1 is a major cause of antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR ABC transporter has been solved. Cdr1 contains 23 cysteines; 10 are cytosolic and 13 are predicted to be in the transmembrane or the extracellular domains. The objective of this project was to create, and biochemically characterize, CDR1 mutants to reveal which cysteines are most important for Cdr1 stability, trafficking, and function. During this process we discovered a novel motif at the cytosolic apex of PDR transporters that ensures the structural and functional integrity of the ABCG transporter family. The creation of a functional Cys-deficient Cdr1 molecule opens new avenues for cysteine-cross-linking studies that will facilitate the detailed characterization of an important ABCG transporter family member.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Candida albicans/genética , Candida albicans/metabolismo , Cisteína/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Cisteína/genética , Mutação , Dobramento de Proteína , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Front Microbiol ; 12: 673206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149660

RESUMO

Fusarium keratoplasticum is arguably the most common Fusarium solani species complex (FSSC) species associated with human infections. Invasive fusariosis is a life-threatening fungal infection that is difficult to treat with conventional azole antifungals. Azole drug resistance is often caused by the increased expression of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG sub-family. Most investigations of Fusarium ABC transporters associated with azole antifungal drug resistance are limited to plant pathogens. Through the manual curation of the entire ABCG protein family of four FSSC species including the fully annotated genome of the plant pathogen Nectria haematococca we identified PDR transporters ABC1 and ABC2 as the efflux pump candidates most likely to be associated with the innate azole resistance phenotype of Fusarium keratoplasticum. An initial investigation of the transcriptional response of logarithmic phase F. keratoplasticum cells to 16 mg/L voriconazole confirmed strong upregulation (372-fold) of ABC1 while ABC2 mRNA levels were unaffected by voriconazole exposure over a 4 h time-period. Overexpression of F. keratoplasticum ABC1 and ABC2 in the genetically modified Saccharomyces cerevisiae host ADΔΔ caused up to ∼1,024-fold increased resistance to a number of xenobiotics, including azole antifungals. Although ABC1 and ABC2 were only moderately (20% and 10%, respectively) expressed compared to the Candida albicans multidrug efflux pump CDR1, overexpression of F. keratoplasticum ABC1 caused even higher resistance levels to certain xenobiotics (e.g., rhodamine 6G and nigericin) than CDR1. Our investigations suggest an important role for ABC1 orthologues in the innate azole resistance phenotype of FSSC species.

17.
J Vis Exp ; (172)2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34180894

RESUMO

The successful biochemical and biophysical characterization of ABC transporters depends heavily on the choice of the heterologous expression system. Over the past two decades, we have developed a yeast membrane protein expression platform that has been used to study many important fungal membrane proteins. The expression host Saccharomyces cerevisiae ADΔΔ is deleted in seven major endogenous ABC transporters and it contains the transcription factor Pdr1-3 with a gain-of-function mutation that enables the constitutive overexpression of heterologous membrane protein genes stably integrated as single copies at the genomic PDR5 locus. The creation of versatile plasmid vectors and the optimization of one-step cloning strategies enables the rapid and accurate cloning, mutagenesis, and expression of heterologous ABC transporters. Here, we describe the development and use of a novel protease-cleavable mGFPHis double tag (i.e., the monomeric yeast enhanced green fluorescent protein yEGFP3 fused to a six-histidine affinity purification tag) that was designed to avoid possible interference of the tag with the protein of interest and to increase the binding efficiency of the His tag to nickel-affinity resins. The fusion of mGFPHis to the membrane protein ORF (open reading frame) enables easy quantification of the protein by inspection of polyacrylamide gels and detection of degradation products retaining the mGFPHis tag. We demonstrate how this feature facilitates detergent screening for membrane protein solubilization. A protocol for the efficient, fast, and reliable isolation of the small-scale plasma membrane preparations of the C-terminally tagged Candida albicans multidrug efflux transporter Cdr1 overexpressed in S. cerevisiae ADΔΔ, is presented. This small-scale plasma membrane isolation protocol generates high-quality plasma membranes within a single working day. The plasma membrane preparations can be used to determine the enzyme activities of Cdr1 and Cdr1 mutant variants.


Assuntos
Candida albicans , Proteínas Fúngicas , Proteínas de Membrana Transportadoras , Saccharomyces cerevisiae , Antifúngicos , Candida albicans/genética , Membrana Celular , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética
18.
Fungal Genet Biol ; 47(2): 127-42, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19857594

RESUMO

The overexpression of pleiotropic drug resistance (PDR) efflux pumps of the ATP-binding cassette (ABC) transporter superfamily frequently correlates with multidrug resistance. Phylogenetic analysis of 349 full-size ( approximately 160kDa) PDR proteins (Pdrps) from 55 fungal species, including major fungal pathogens, identified nine separate protein clusters (A-G, H1a/H1b and H2). Fungal, plant and human ABCG-family Pdrps possess a nucleotide-binding domain [NBD] and a transmembrane domain [TMD] in a family-defining 'reverse' ABC transporter topology [NBD-TMD] that is duplicated [NBD-TMD](2) in full-size fungal and plant Pdrps. Although full-size Pdrps have similar halves indicating early gene duplication/fusion, they show asymmetry of their NBDs and extracellular loops (ELs). Members of cluster F are most symmetric and may be closely related to the evolutionary ancestor of Pdrps. Unique structural elements are predicted, new PDR-specific motifs identified, and the significance of these and other structural features discussed.


Assuntos
Farmacorresistência Fúngica/fisiologia , Resistência a Múltiplos Medicamentos/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Fungos/classificação , Fungos/fisiologia , Filogenia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Motivos de Aminoácidos , Antifúngicos/farmacologia , Proteínas de Ligação a DNA/química , Farmacorresistência Fúngica/genética , Resistência a Múltiplos Medicamentos/genética , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Humanos
19.
Front Microbiol ; 11: 272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296397

RESUMO

In the fungal pathogen Aspergillus fumigatus, resistance to azole antifungals is often linked to mutations in CYP51A, a gene that encodes the azole antifungal drug target lanosterol 14α-demethylase. The aim of this study was to investigate whether similar changes could be associated with azole resistance in a Malaysian Fusarium solani species complex (FSSC) isolate collection. Most (11 of 15) clinical FSSC isolates were Neocosmospora keratoplastica and the majority (6 of 10) of environmental isolates were Neocosmospora suttoniana strains. All 25 FSSC isolates had high minimum inhibitory concentrations (MICs) for itraconazole and posaconazole, low MICs for amphotericin B, and various (1 to >32 mg/l) voriconazole susceptibilities. There was a tight association between a 23 bp CYP51A promoter deletion and high (>32 mg/l) voriconazole MICs; of 19 FSSC strains sequenced, nine isolates had voriconazole MICs > 32 mg/l, and they all contained the 23 bp CYP51A promoter deletion, although it was absent in the ten remaining isolates with low (≤12 mg/l) voriconazole MICs. Surprisingly, this association between voriconazole resistance and the 23 bp CYP51A promoter deletion held true across species boundaries. It was randomly distributed within and across species boundaries and both types of FSSC isolates were found among environmental and clinical isolates. Three randomly selected N. keratoplastica isolates with low (≤8 mg/l) voriconazole MICs had significantly lower (1.3-7.5 times) CYP51A mRNA expression levels than three randomly selected N. keratoplastica isolates with high (>32 mg/l) voriconazole MICs. CYP51A expression levels, however, were equally strongly induced (~6,500-fold) by voriconazole in two representative strains reaching levels, after 80 min of induction, that were comparable to those of CYP51B. Our results suggest that FSSC isolates with high voriconazole MICs have a 23 bp CYP51A promoter deletion that provides a potentially useful marker for voriconazole resistance in FSSC isolates. Early detection of possible voriconazole resistance is critical for choosing the correct treatment option for patients with invasive fusariosis.

20.
Antimicrob Agents Chemother ; 53(2): 354-69, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19015352

RESUMO

Most Candida krusei strains are innately resistant to fluconazole (FLC) and can cause breakthrough candidemia in immunocompromised individuals receiving long-term prophylactic FLC treatment. Although the azole drug target, Erg11p, of C. krusei has a relatively low affinity for FLC, drug efflux pumps are also believed to be involved in its innate FLC resistance. We describe here the isolation and characterization of Abc1p, a constitutively expressed multidrug efflux pump, and investigate ERG11 and ABC1 expression in C. krusei. Examination of the ERG11 promoter revealed a conserved azole responsive element that has been shown to be necessary for the transcription factor Upc2p mediated upregulation by azoles in related yeast. Extensive cloning and sequencing identified three distinct ERG11 alleles in one of two C. krusei strains. Functional overexpression of ERG11 and ABC1 in Saccharomyces cerevisiae conferred high levels of resistance to azoles and a range of unrelated Abc1p pump substrates, while small molecule inhibitors of Abc1p chemosensitized C. krusei to azole antifungals. Our data show that despite the presence of multiple alleles of ERG11 in some, likely aneuploid, C. krusei strains, it is mainly the low affinity of Erg11p for FLC, together with the constitutive but low level of expression of the multidrug efflux pump Abc1p, that are responsible for the innate FLC resistance of C. krusei.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Northern Blotting , Southern Blotting , Candidíase/microbiologia , Membrana Celular/metabolismo , Cromossomos Fúngicos/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Humanos , Fenótipo , Plasmídeos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA