Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 206(2): 709-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25581169

RESUMO

In Hevea brasiliensis, an alkaline/neutral invertase (A/N-Inv) is responsible for sucrose catabolism in latex (essentially the cytoplasm of rubber-producing laticifers, the source of natural rubber) and implicated in rubber yield. However, neither the gene encoding this enzyme nor its molecular and biochemical properties have been well documented. Three Hevea A/N-Inv genes, namely HbNIN1, 2 and 3, were first cloned and characterized in planta and in Escherichia coli. Cellular localizations of HbNIN2 mRNA and protein were probed. From latex, active A/N-Inv proteins were purified, identified, and explored for enzymatic properties. HbNIN2 was identified as the major A/N-Inv gene functioning in latex based on its functionality in E. coli, its latex-predominant expression, the conspicuous localization of its mRNA and protein in the laticifers, and its expressional correlation with rubber yield. An active A/N-Inv protein was partially purified from latex, and determined as HbNIN2. The enhancement of HbNIN2 enzymatic activity by pyridoxal is peculiar to A/N-Invs in other plants. We conclude that HbNIN2, a cytosolic A/N-Inv, is responsible for sucrose catabolism in rubber laticifers. The results contribute to the studies of sucrose catabolism in plants as a whole and natural rubber synthesis in particular.


Assuntos
Hevea/enzimologia , Sacarose/metabolismo , beta-Frutofuranosidase/metabolismo , Sequência de Aminoácidos , Citosol/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hevea/citologia , Hevea/genética , Látex/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/enzimologia , Caules de Planta/genética , Alinhamento de Sequência , beta-Frutofuranosidase/genética
2.
Front Genet ; 13: 756270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222526

RESUMO

Natural rubber, an important industrial raw material with wide applications, is harvested in the form of latex (cytoplasm of rubber-producing laticifers) from Hevea brasiliensis (para rubber tree) by the way of tapping. Conspicuous stimulation on latex production is observed for the first few tappings conducted on virgin (untapped before) or resting (tapped before but no tapping for a period) rubber trees. To understand the underlying mechanisms, an integrative analysis of the latex transcriptome and proteome was conducted on virgin or resting Hevea trees for the first five tappings. A total of 505 non-redundant differentially expressed (DE) transcript-derived fragments (TDFs) were identified by silver-staining cDNA-AFLP, with 217 exhibiting patterns of upregulated, 180 downregulated and 108 irregularly-regulated. Meanwhile, 117 two dimensional gel electrophoresis DE-protein spots were isolated and subjected to mass spectrometry analysis, with 89 and 57 being successfully identified by MALDI-TOF and MALDI-TOF/TOF, respectively. About 72.5% DE-TDFs and 76.1% DE-proteins were functionally annotated and categorized. Noteworthily, most of the DE-TDFs implicated in sugar transport and metabolism as well as rubber biosynthesis were upregulated by the tapping treatment. The importance of sugar metabolism in harvesting-induced latex production was reinforced by the identification of abundant relevant DE-protein spots. About 83.8% of the randomly selected DE-TDFs were validated for expression patterns by semi-quantitative RT-PCR, and an 89.7% consistency for the 29 latex regeneration-related DE-TDFs examined by quantitative RT-PCR analysis. In brief, our results reveal extensive physiological and molecular changes in Hevea laticifers incurred by the tapping treatment, and the vast number of DE genes and proteins identified here contribute to unraveling the gene regulatory network of tapping-stimulated latex production.

3.
Front Plant Sci ; 9: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449852

RESUMO

Sucrose-metabolizing enzymes in plant leaves have hitherto been investigated mainly in temperate plants, and rarely conducted in tandem with gene expression and sugar analysis. Here, we investigated the sugar content, gene expression, and the activity of sucrose-metabolizing enzymes in the leaves of Hevea brasiliensis, a tropical tree widely cultivated for natural rubber. Sucrose, fructose and glucose were the major sugars detected in Hevea leaves at four developmental stages (I to IV), with starch and quebrachitol as minor saccharides. Fructose and glucose contents increased until stage III, but decreased strongly at stage IV (mature leaves). On the other hand, sucrose increased continuously throughout leaf development. Activities of all sucrose-cleaving enzymes decreased markedly at maturation, consistent with transcript decline for most of their encoding genes. Activity of sucrose phosphate synthase (SPS) was low in spite of its high transcript levels at maturation. Hence, the high sucrose content in mature leaves was not due to increased sucrose-synthesizing activity, but more to the decline in sucrose cleavage. Gene expression and activities of sucrose-metabolizing enzymes in Hevea leaves showed striking differences compared with other plants. Unlike in most other species where vacuolar invertase predominates in sucrose cleavage in developing leaves, cytoplasmic invertase and sucrose synthase (cleavage direction) also featured prominently in Hevea. Whereas SPS is normally responsible for sucrose synthesis in plant leaves, sucrose synthase (synthesis direction) was comparable or higher than that of SPS in Hevea leaves. Mature Hevea leaves had an unusually high sucrose:starch ratio of about 11, the highest reported to date in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA