Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Pediatr ; 24(1): 352, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778342

RESUMO

BACKGROUND: Galactosemia is an autosomal recessive disorder resulting from an enzyme defect in the galactose metabolic pathway. The most severe manifestation of classic galactosemia is caused by galactose-1-phosphate uridylyltransferase (GALT) deficiency, and this condition can be fatal during infancy if left untreated. It also may result in long-term complications in affected individuals. CASE PRESENTATION: This report describes a patient whose initial clinical symptoms were jaundice and liver dysfunction. The patient's liver and coagulation functions did not improve after multiple admissions and treatment with antibiotics, hepatoprotective and choleretic agents and blood transfusion. Genetic analysis revealed the presence of two variants in the GALT gene in the compound heterozygous state: c.377 + 2dup and c.368G > C (p.Arg123Pro). Currently, the variant locus (c.377 + 2dup) in the GALT gene has not been reported in the Human Gene Mutation Database (HGMD), while c.368G > C (p.Arg123Pro) has not been reported in the Genome Aggregation Database (GnomAD) nor the HGMD in East Asian population. We postulated that the two variants may contribute to the development of classical galactosemia. CONCLUSIONS: Applications of whole-exome sequencing to detect the two variants can improve the detection and early diagnosis of classical galactosemia and, more specifically, may identify individuals who are compound heterozygous with variants in the GALT gene. Variants in the GALT gene have a potential therapeutic significance for classical galactosemia.


Assuntos
Galactosemias , UTP-Hexose-1-Fosfato Uridililtransferase , Humanos , Galactosemias/genética , Galactosemias/diagnóstico , UTP-Hexose-1-Fosfato Uridililtransferase/genética , Masculino , Feminino , Mutação , Lactente
2.
Diabetes Metab Syndr Obes ; 17: 675-689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352234

RESUMO

Purpose: To investigate the intestinal inflammatory response and the abundance of intestinal bacteria in rats with high-fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) and assess the intervention effects of taurine (TAU). Methods: Forty male Sprague-Dawley rats were randomly divided into five groups: group I, normal diet and normal saline gavage; group II, normal diet and TAU gavage; group III, HFD and normal saline gavage; group IV, HFD and TAU gavage (from the 1st week); group V, HFD and TAU gavage (from the 10th week). At the end of the 16th week, all the animals were sacrificed. Body weight, liver weight, liver function, and serum lipid levels were measured. The histopathologies of the liver and ileum were observed. The mRNA and protein expression levels of interleukin 17 (IL-17) and IL-10 in the ileum were detected by reverse transcription quantitative polymerase chain reaction (qPCR) and immunohistochemistry. Three types of bacteria were detected in intestinal feces using the 16S rDNA qPCR method. Results: The ileal IL-17 level in group III was significantly higher than those in the other four groups (P < 0.01). The ileal IL-10 mRNA levels in group IV was significantly higher than those in groups III and V (P < 0.05), and IL-10 protein MOD levels in group III was significantly lower than those in the other four groups (P < 0.01). The numbers of Lactobacillus in group III were significantly lower than those in the other four groups (P < 0.01 or P < 0.05). The numbers of Bifidobacteria in groups IV and V were significantly increased compared with that in group III (P < 0.05). Conclusion: TAU may down-regulate the expression of IL-17, up-regulate the expression of IL-10 and regulate the intestinal flora, and alleviate the liver and intestinal damage in rats with HFD-induced NAFLD.

3.
Front Pediatr ; 10: 1003887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210929

RESUMO

Background: Wilson's disease (WD) is a rare cause of acute liver failure (ALF) and has a high fatality rate. Rapid and accurate diagnosis is important for ALF because of WD (ALF-WD). Our objective was to establish a simple, rapid, and accurate diagnostic test to distinguish ALF-WD from non-WD ALF (NWDALF) in children. Materials and methods: The data from all cases with pediatric ALF were retrospectively collected and analyzed. We performed receiver operator characteristics curve (ROC) analysis and confirmed the optimum cut-off points. Results: Fifty-eight patients with pediatric ALF (12 with WD, 46 with other etiologies) were included. Older age was observed in ALF-WD compared to NWDALF (11.16 ± 2.51 years vs. 3.34 ± 3.81 years, p < 0.001). An analysis based on routine biochemical testings revealed that total bilirubin (TBil), direct bilirubin, indirect bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST:ALT ratio, alkaline phosphatase (ALP), ALP:TBil ratio, serum albumin, gamma-glutamyl transferase, cholinesterase, hemoglobin, and platelet were statistically significant between the ALF-WD and NWDALF groups. The optimum cut-off points were obtained through ROC analysis. A scoring system was formed by assigning a score of 1 or 0 to patients who met the 13 cut-off points. Using ROC analysis, we determined a cut-off point of ≥ 6.5 for ALF-WD with 91.7% sensitivity and 97.8% specificity (p < 0.0001). In addition, a best cut-off point of ≥ 1.5 based on only five variables (ALT, AST, AST:ALT ratio, ALP, and ALP:TBil ratio), had 100% sensitivity and 91.3% specificity for ALF-WD (p < 0.0001). Based on this, when age was calculated as the sixth indicator, the best cut-off value of ≥ 2.5 had 100% sensitivity and 97.8% specificity (p < 00.0001). Conclusion: Our study developed a new scoring system that consists of simple laboratory tests with good sensitivity and specificity and can be used by clinicians to quickly distinguish ALF-WD from NWDALF in children.

4.
World J Clin Cases ; 9(26): 7876-7885, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34621841

RESUMO

BACKGROUND: The ATP6AP1 gene coding for the accessory protein Ac45 of the vacuolar-type adenosine triphosphatases (V-ATPase) is located on chromosome Xq28. Defects in certain subunits or accessory subunits of the V-ATPase can lead to congenital disorders of glycosylation (CDG). CDG is a group of metabolic disorders in which defective protein and lipid glycosylation processes affect multiple tissues and organs. Therefore, the clinical presentation of patients with ATP6AP1-CDG varies widely. In this report, we present a case of ATP6AP1-CDG in a Chinese infant, with clinical features and genotype. CASE SUMMARY: An 8-mo-old boy was admitted to our hospital because unexplained hepatosplenomegaly and elevated transaminases that had been noted while he was being treated for a cough at a local hospital. A post-admission examination at our hospital revealed abnormalities in the infant's liver, brain, and immune system. Trio-based whole exome gene analysis identified a hemizygous pathogenic mutation c.1036G>A (p.E346K) in exon 9 of the ATP6AP1 gene. This variant of the ATP6AP1 gene has not been reported in East Asian countries until now. CONCLUSION: Based on the infant's clinical manifestations and the results of genetic detection, he was clearly diagnosed with ATP6AP1-CDG. The clinical manifestations of children with CDG vary widely. Genetic testing analysis helps in the clinical diagnosis of children with CDG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA