Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 239(1): 429-444, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36811411

RESUMO

Traditionally, botanists study plant anatomy by carefully sectioning samples, histological staining to highlight tissues of interests, then imaging slides under light microscopy. This approach generates significant details; however, this workflow is laborious, particularly in woody vines (lianas) with heterogeneous anatomies, and ultimately yields two-dimensional (2D) images. Laser ablation tomography (LATscan) is a high-throughput imaging system that yields hundreds of images per minute. This method has proven useful for studying the structure of delicate plant tissues; however, its utility in understanding the structure of woody tissues is underexplored. We report LATscan-derived anatomical data from several stems of lianas (c. 20 mm) of seven species and compare these results with those obtained through traditional anatomical techniques. LATscan successfully allows the description of tissue composition by differentiating cell type, size, and shape, but also permits the recognition of distinct cell wall composition (e.g. lignin, suberin, cellulose) based on differential fluorescent signals on unstained samples. LATscan generate high-quality 2D images and 3D reconstructions of woody plant samples; therefore, this new technology is useful for both qualitative and quantitative analyses. This high-throughput imaging technology has the potential to bolster phenotyping of vegetative and reproductive anatomy, wood anatomy, and other biological systems.


Assuntos
Celulose , Madeira , Madeira/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Tomografia
2.
J Exp Biol ; 225(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36172812

RESUMO

Antlion larvae are fluid-feeding ambush predators that feed on arthropods trapped in their funnel-shaped pits built in sandy habitats; however, details are lacking about their feeding mechanism. Here, we tested the hypothesis that the antlion, Myrmeleon crudelis, has adaptations that facilitate fluid feeding in sandy habitats. We measured contact angles of water droplets and used the capillary-rise technique to assess mouthpart wettability. A structural organization was discovered that provides a hydrophobic-hydrophilic wetting dichotomy that simultaneously supports self-cleaning and fluid uptake and is enabled by antiparallel movements of the maxillae. The mouthparts also are augmented by their mechanical properties, including maxillae and mandible tips that might be heavily sclerotized, as determined by confocal microscopy, which likely facilitates piercing prey. Our findings provide insight into how antlion larvae have overcome the challenges of fluid feeding in sandy habitats, which probably contributed to their success and widespread distribution.


Assuntos
Adaptação Fisiológica , Insetos , Larva , Boca , Animais , Ecossistema , Comportamento Alimentar/fisiologia , Larva/fisiologia , Boca/fisiologia , Comportamento Predatório/fisiologia , Areia
3.
Sci Rep ; 14(1): 1046, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200040

RESUMO

The actualization of high strength and ductility in alloys, in addition to providing strong, formable materials, can lead to reduced weights in practical applications. However, increasing strength typically comes at the cost of lowering the ductility and vice-versa, referred to as the strength-ductility trade-off. In this work, we investigate the thermo-mechanical response of a 3-element multifunctional NiTi-Nb nanocomposite material that overcomes this trade-off, as it exhibits a high strength of 980 MPa and an ultrahigh ductility of 58% at fracture. The remarkable properties are attributed to the underlying microstructure of Nb nanofibers dispersed in an NiTi matrix. Deformation is accommodated via the shape memory transformation of the active NiTi matrix in concert with elastoplastic deformation of Nb nanofibers embedded within the matrix. Consequently, the material exhibits multifunctionality and recovers deformation during heating via the reversion of the stress-induced martensitic transformation in the NiTi matrix. The high strength and high ductility of this 3-element nanocomposite material puts it amongst the best performing high-entropy alloys (HEAs) that are typically made up of five or more elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA