Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445899

RESUMO

Biallelic pathogenic variants in subunits of succinyl-CoA synthetase (SCS), a tricarboxylic acid (TCA) cycle enzyme, are associated with mitochondrial encephalomyopathy in humans. SCS catalyzes the interconversion of succinyl-CoA to succinate, coupled to substrate-level phosphorylation of either ADP or GDP, within the TCA cycle. SCS-deficient encephalomyopathy typically presents in infancy and early childhood, with many patients succumbing to the disease during childhood. Common symptoms include abnormal brain MRI, basal ganglia lesions and cerebral atrophy, severe hypotonia, dystonia, progressive psychomotor regression, and growth deficits. Although subunits of SCS were first identified as causal genes for progressive metabolic encephalomyopathy in the early 2000s, recent investigations are now beginning to unravel the pathomechanisms underlying this metabolic disorder. This article reviews the current understanding of SCS function within and outside the TCA cycle as it relates to the complex and multifactorial mechanisms underlying SCS-related mitochondrial encephalomyopathy.


Assuntos
Encefalomiopatias Mitocondriais , Succinato-CoA Ligases , Pré-Escolar , Humanos , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Succinato-CoA Ligases/genética , Succinato-CoA Ligases/metabolismo , Estresse Oxidativo
2.
Artigo em Inglês | MEDLINE | ID: mdl-39482887

RESUMO

BACKGROUND: Pathogenic variants in subunits of succinyl-CoA synthetase (SCS) are associated with mitochondrial encephalomyopathy in humans. SCS catalyses the conversion of succinyl-CoA to succinate coupled with substrate-level phosphorylation of either ADP or GDP in the TCA cycle. This report presents a muscle-specific conditional knock-out (KO) mouse model of Sucla2, the ADP-specific beta subunit of SCS, generating a novel in vivo model of mitochondrial myopathy. METHODS: The mouse model was generated using the Cre-Lox system, with the human skeletal actin (HSA) promoter driving Cre-recombination of a CRISPR-Cas9-generated Sucla2 floxed allele within skeletal muscle. Inactivation of Sucla2 was validated using RT-qPCR and western blot, and both enzyme activity and serum metabolites were quantified by mass spectrometry. To characterize the model in vivo, whole-body phenotyping was conducted, with mice undergoing a panel of strength and locomotor behavioural assays. Additionally, ex vivo contractility experiments were performed on the soleus (SOL) and extensor digitorum longus (EDL) muscles. SOL and EDL cryosections were also subject to imaging analyses to assess muscle fibre-specific phenotypes. RESULTS: Molecular validation confirmed 68% reduction of Sucla2 transcript within the mutant skeletal muscle (p < 0.001) and 95% functionally reduced SUCLA2 protein (p < 0.0001). By 3 weeks of age, Sucla2 KO mice were 44% the size of controls by body weight (p < 0.0001). Mutant mice also exhibited 34%-40% reduced grip strength (p < 0.01) and reduced spontaneous exercise, spending about 88% less cumulative time on a running wheel (p < 0.0001). Contractile function was also perturbed in a muscle-specific manner; although no genotype-specific deficiencies were seen in EDL function, SUCLA2-deficient SOL muscles generated 40% less specific tetanic force (p < 0.0001), alongside slower contraction and relaxation rates (p < 0.001). Similarly, a SOL-specific threefold increase in mitochondria (p < 0.0001) was observed, with qualitatively increased staining for both COX and SDH, and the proportion of Type 1 myosin heavy chain expressing fibres within the SOL was nearly doubled (95% increase, p < 0.0001) in the Sucla2 KO mice compared with that in controls. CONCLUSIONS: SUCLA2 loss within murine skeletal muscle yields a model of SCS-deficient mitochondrial myopathy with reduced body weight, muscle weakness and exercise intolerance. Physiological and morphological analyses of hindlimb muscles showed remarkable differences in ex vivo function and cellular consequences between the EDL and SOL muscles, with SOL muscles significantly more impacted by Sucla2 inactivation. This novel model will provide an invaluable tool for investigations of muscle-specific and fibre type-specific pathogenic mechanisms to better understand SCS-deficient myopathy.

3.
Cell Rep ; 42(10): 113241, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37819759

RESUMO

Lysine succinylation is a subtype of protein acylation associated with metabolic regulation of succinyl-CoA in the tricarboxylic acid cycle. Deficiency of succinyl-CoA synthetase (SCS), the tricarboxylic acid cycle enzyme catalyzing the interconversion of succinyl-CoA to succinate, results in mitochondrial encephalomyopathy in humans. This report presents a conditional forebrain-specific knockout (KO) mouse model of Sucla2, the gene encoding the ATP-specific beta isoform of SCS, resulting in postnatal deficiency of the entire SCS complex. Results demonstrate that accumulation of succinyl-CoA in the absence of SCS leads to hypersuccinylation within the murine cerebral cortex. Specifically, increased succinylation is associated with functionally significant reduced activity of respiratory chain complex I and widescale alterations in chromatin landscape and gene expression. Integrative analysis of the transcriptomic data also reveals perturbations in regulatory networks of neuronal transcription in the KO forebrain. Together, these findings provide evidence that protein succinylation plays a significant role in the pathogenesis of SCS deficiency.


Assuntos
Mitocôndrias , Succinato-CoA Ligases , Humanos , Animais , Camundongos , Mitocôndrias/metabolismo , Acil Coenzima A/metabolismo , Succinato-CoA Ligases/genética , Succinato-CoA Ligases/metabolismo , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA