Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cancer Cell Int ; 23(1): 65, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038210

RESUMO

Sphingosine-1-phosphate (S1P) is a lipid mediator and its binding to the S1P receptor 2 (S1PR2) is reported to regulate cytoskeletal organization. Epidermal growth factor (EGF) has been shown to induce migration and invasion in tumour cells. Since binding of S1P to S1PR2 and EGF to the EGF receptors exhibit some overlapping functionality, this study aimed to determine whether S1PR2 was involved in EGF-induced migration and invasion of oral squamous cell carcinoma (OSCC) lines and to identify any potential crosstalk between the two pathways. Migration was investigated using the scratch wound assay while invasion was studied using the transwell invasion and multicellular tumour spheroid (MCTS) assays. Activity of Rac1, a RhoGTPase, was measured using G-LISA (small GTPase activation assays) while S1P production was indirectly measured via the expression of sphingosine kinase (Sphk). S1PR2 inhibition with 10 µM JTE013 reduced EGF-induced migration, invasion and Rac1 activity, however, stimulation of S1PR2 with 10 µM CYM5478 did not enhance the effect of EGF on migration, invasion or Rac1 activity. The data demonstrated a crosstalk between EGF/EGFR and S1P/S1PR2 pathways at the metabolic level. S1PR2 was not involved in EGF production, but EGF promoted S1P production through the upregulation of Sphk1. In conclusion, OSCC lines could not migrate and invade without S1PR2 regulation, even with EGF stimulation. EGF also activated S1PR2 by stimulating S1P production via Sphk1. The potential for S1PR2 to control cellular motility may lead to promising treatments for OSCC patients and potentially prevent or reduce metastasis.

2.
J Oral Pathol Med ; 52(2): 181-187, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36207782

RESUMO

BACKGROUND: Primordial odontogenic tumour is a benign mixed neoplasm of recent description, which has histological similarities with other odontogenic tumours such as the ameloblastic fibroma. In this article, we investigate the architecture of the sub-epithelial layer of mesenchymal cells expressing the marker CD34 in primordial odontogenic tumour. OBJECTIVE: Analyse the spatial patterns of CD34 expression in primordial odontogenic tumour and compare them with those in ameloblastic fibroma and the normal tooth germ by means of objective imaging approaches, to better characterise these lesions. METHODS: Two cases of primordial odontogenic tumour, four cases of ameloblastic fibroma and two cases of tooth germ in cap and bell stages were used for morphological, structural and immunohistochemical analyses. RESULTS: CD34 expression was found in vascular endothelium of primordial odontogenic tumour, ameloblastic fibroma and tooth germ. In addition, a characteristic sub-epithelial expression was observed only in primordial odontogenic tumour, corresponding to 84%-86% of the sample boundaries. Moreover, the zone expressing CD34 corresponded with a higher cellularity, which was absent in ameloblastic fibroma and tooth germ. CONCLUSION: Image analysis of the primordial odontogenic tumour architecture revealed characteristics absent in other odontogenic tumours and tooth germs. This study provides additional information to support the idea that this neoplasm is a distinct entity from early stage AF or developing odontoma.


Assuntos
Fibroma , Tumores Odontogênicos , Odontoma , Humanos , Tumores Odontogênicos/patologia , Germe de Dente , Odontoma/patologia , Moléculas de Adesão Celular/análise
3.
Clin Oral Investig ; 27(12): 7231-7236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945906

RESUMO

OBJECTIVE: To evaluate the reliability and validity of a novel method for remotely measuring trismus. MATERIALS AND METHODS: We recruited 60 volunteers who took three types of photographs at a fixed restricted jaw position mimicking limited mouth opening, including one selfie and one portrait with or without a reference frame. Additionally, the interincisal distance and the width of the upper central incisors were measured with a ruler, as per common practice. Measurements of trismus were made using image analysis software comparing different types of photos and calibration methods. Intraclass correlation coefficient (ICC) and 95% limits of agreement (LoA) with 95% confidence interval were calculated to evaluate reliability and validity. RESULTS: The proposed method demonstrated high reliability (ICC 0.998; 95% CI 0.997, 0.999). Calibration of photographs using at least a baseline photograph with an external reference frame yielded unbiased measurements and minimised variability. The use of selfies compared to portrait photos also increased variability. CONCLUSION: The measurement of trismus can be performed using images taken remotely by patients using their mobile phone cameras. The proposed method is highly accurate, with best results obtained by using a reference frame for calibration of portrait photographs. CLINICAL RELEVANCE: We propose an easy, cheap, and accurate method that allows for remote and frequent monitoring of trismus in clinical studies using patients' mobile phones.


Assuntos
Telefone Celular , Trismo , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes , Software , Trismo/diagnóstico , Ensaios Clínicos como Assunto
4.
Bioinformatics ; 37(10): 1485-1487, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32997742

RESUMO

MOTIVATION: Microscopy images of stained cells and tissues play a central role in most biomedical experiments and routine histopathology. Storing colour histological images digitally opens the possibility to process numerically colour distribution and intensity to extract quantitative data. Among those numerical procedures are colour deconvolution, which enable decomposing an RGB image into channels representing the optical absorbance and transmittance of the dyes when their RGB representation is known. Consequently, a range of new applications become possible for morphological and histochemical segmentation, automated marker localization and image enhancement. AVAILABILITY AND IMPLEMENTATION: Colour deconvolution is presented here in two open-source forms: a MATLAB program/function and an ImageJ plugin written in Java. Both versions run in Windows, Macintosh and UNIX-based systems under the respective platforms. Source code and further documentation are available at: https://blog.bham.ac.uk/intellimic/g-landini-software/colour-deconvolution-2/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Corantes , Software , Cor , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Microscopia
5.
J Microsc ; 270(1): 53-63, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29023718

RESUMO

The application of secondary electron (SE) imaging, backscattered electron imaging (BSE) and electron backscattered diffraction (EBSD) was investigated in this work to study the bacterial adhesion and proliferation on a commercially pure titanium (cp Ti) and a Ti6Al4V alloy (Ti 64) with respect to substrate microstructure and chemical composition. Adherence of Gram-positive Staphylococcus epidermidis 11047 and Streptococcus sanguinis GW2, and Gram-negative Serratia sp. NCIMB 40259 and Escherichia coli 10418 was compared on cp Ti, Ti 64, pure aluminium (Al) and vanadium (V). The substrate microstructure and the bacterial distribution on these metals were characterised using SE, BSE and EBSD imaging. It was observed that titanium alloy-phase structure, grain boundaries and grain orientation did not influence bacterial adherence or proliferation at microscale. Adherence of all four strains was similar on cp Ti and Ti 64 surfaces whilst inhibited on pure Al. This work establishes a nondestructive and straight-forward statistical method to analyse the relationship between microbial distribution and metal alloy structure.


Assuntos
Ligas , Aderência Bacteriana , Microbiologia Ambiental , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Titânio , Alumínio , Microscopia Eletrônica , Propriedades de Superfície , Vanádio
6.
Chem Biomed Imaging ; 2(3): 213-221, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38551010

RESUMO

High-resolution spatial and temporal analysis and 3D visualization of time-dependent processes, such as human dental enamel acid demineralization, often present a challenging task. Overcoming this challenge often requires the development of special methods. Dental caries remains one of the most important oral diseases that involves the demineralization of hard dental tissues as a consequence of acid production by oral bacteria. Enamel has a hierarchically organized architecture that extends down to the nanostructural level and requires high resolution to study its evolution in detail. Enamel demineralization is a dynamic process that is best investigated with the help of in situ experiments. In previous studies, synchrotron tomography was applied to study the 3D enamel structure at certain time points (time-lapse tomography). Here, another distinct approach to time-evolving tomography studies is presented, whereby the sample image is reconstructed as it undergoes continuous rotation over a virtually unlimited angular range. The resulting (single) data set contains the data for multiple (potentially overlapping) intermediate tomograms that can be extracted and analyzed as desired using time-stepping selection of data subsets from the continuous fly-scan recording. One of the advantages of this approach is that it reduces the amount of time required to collect an equivalent number of single tomograms. Another advantage is that the nominal time step between successive reconstructions can be significantly reduced. We applied this approach to the study of acidic enamel demineralization and observed the progression of demineralization over time steps significantly smaller than the total acquisition time of a single tomogram, with a voxel size smaller than 0.5 µm. It is expected that the approach presented in this paper can be useful for high-resolution studies of other dynamic processes and for assessing small structural modifications in evolving hierarchical materials.

7.
Chem Biomed Imaging ; 2(3): 222-232, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38551011

RESUMO

The Dual Imaging and Diffraction (DIAD) beamline at Diamond Light Source (Didcot, U.K.) implements a correlative approach to the dynamic study of materials based on concurrent analysis of identical sample locations using complementary X-ray modalities to reveal structural detail at various length scales. Namely, the underlying beamline principle and its practical implementation allow the collocation of chosen regions within the sample and their interrogation using real-space imaging (radiography and tomography) and reciprocal space scattering (diffraction). The switching between the two principal modes is made smooth and rapid by design, so that the data collected is interlaced to obtain near-simultaneous multimodal characterization. Different specific photon energies are used for each mode, and the interlacing of acquisition steps allows conducting static and dynamic experiments. Building on the demonstrated realization of this state-of-the-art approach requires further refining of the experimental practice, namely, the methods for gauge volume collocation under different modes of beam-sample interaction. To address this challenge, experiments were conducted at DIAD devoted to the study of human dental enamel, a hierarchical structure composed of hydroxyapatite mineral nanocrystals, as a static sample previously affected by dental caries (tooth decay) as well as under dynamic conditions simulating the process of acid demineralization. Collocation and correlation were achieved between WAXS (wide-angle X-ray scattering), 2D (radiographic), and 3D (tomographic) imaging. While X-ray imaging in 2D or 3D modes reveals real-space details of the sample microstructure, X-ray scattering data for each gauge volume provided statistical nanoscale and ultrastructural polycrystal reciprocal-space information such as phase and preferred orientation (texture). Careful registration of the gauge volume positions recorded during the scans allowed direct covisualization of the data from two modalities. Diffraction gauge volumes were identified and visualized within the tomographic data sets, revealing the underlying local information to support the interpretation of the diffraction patterns. The present implementation of the 4D microscopy paradigm allowed following the progression of demineralization and its correlation with time-dependent WAXS pattern evolution in an approach that is transferable to other material systems.

8.
J Struct Biol ; 184(2): 136-46, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24113527

RESUMO

Human enamel is a hierarchical mineralized tissue with a two-level composite structure. Few studies have focused on the structure-mechanical property relationship and its link to the multi-scale architecture of human enamel, whereby the response to mechanical loading is affected not only by the rod distribution at micro-scale, but also strongly influenced by the mineral crystallite shape, and spatial arrangement and orientation. In this study, two complementary synchrotron X-ray diffraction techniques, wide and small angle X-ray scattering (WAXS/SAXS) were used to obtain multi-scale quantitative information about the structure and deformation response of human enamel to in situ uniaxial compressive loading. The apparent modulus was determined linking the external load and the internal strain in hydroxyapatite (HAp) crystallites. An improved multi-scale Eshelby model is proposed taking into account the two-level hierarchical structure of enamel. This framework has been used to analyse the experimental data for the elastic lattice strain evolution within the HAp crystals. The achieved agreement between the model prediction and experiment along the loading direction validates the model and suggests that the new multi-scale approach reasonably captures the structure-property relationship for the human enamel. The ability of the model to predict multi-directional strain components is also evaluated by comparison with the measurements. The results are useful for understanding the intricate relationship between the hierarchical structure and the mechanical properties of enamel, and for making predictions of the effect of structural alterations that may occur due to the disease or treatment on the performance of dental tissues and their artificial replacements.


Assuntos
Esmalte Dentário/química , Módulo de Elasticidade , Algoritmos , Esmalte Dentário/diagnóstico por imagem , Durapatita/química , Humanos , Modelos Moleculares , Dente Molar/química , Dente Molar/diagnóstico por imagem , Espalhamento a Baixo Ângulo , Síncrotrons , Difração de Raios X , Microtomografia por Raio-X
9.
Dent J (Basel) ; 11(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37232781

RESUMO

Caries is a chronic disease that causes the alteration of the structure of dental tissues by acid dissolution (in enamel, dentine and cementum) and proteolytic degradation (dentine and cementum) and generates an important cost of care. There is a need to visualise and characterise the acid dissolution process on enamel due to its hierarchical structure leading to complex structural modifications. The process starts at the enamel surface and progresses into depth, which necessitates the study of the internal enamel structure. Artificial demineralisation is usually employed to simulate the process experimentally. In the present study, the demineralisation of human enamel was studied using surface analysis carried out with atomic force microscopy as well as 3D internal analysis using synchrotron X-ray tomography during acid exposure with repeated scans to generate a time-lapse visualisation sequence. Two-dimensional analysis from projections and virtual slices and 3D analysis of the enamel mass provided details of tissue changes at the level of the rods and inter-rod substance. In addition to the visualisation of structural modifications, the rate of dissolution was determined, which demonstrated the feasibility and usefulness of these techniques. The temporal analysis of enamel demineralisation is not limited to dissolution and can be applied to other experimental conditions for the analysis of treated enamel or remineralisation.

10.
Dent J (Basel) ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37185477

RESUMO

Hard dental tissues possess a complex hierarchical structure that is particularly evident in enamel, the most mineralised substance in the human body. Its complex and interlinked organisation at the Ångstrom (crystal lattice), nano-, micro-, and macro-scales is the result of evolutionary optimisation for mechanical and functional performance: hardness and stiffness, fracture toughness, thermal, and chemical resistance. Understanding the physical-chemical-structural relationships at each scale requires the application of appropriately sensitive and resolving probes. Synchrotron X-ray techniques offer the possibility to progress significantly beyond the capabilities of conventional laboratory instruments, i.e., X-ray diffractometers, and electron and atomic force microscopes. The last few decades have witnessed the accumulation of results obtained from X-ray scattering (diffraction), spectroscopy (including polarisation analysis), and imaging (including ptychography and tomography). The current article presents a multi-disciplinary review of nearly 40 years of discoveries and advancements, primarily pertaining to the study of enamel and its demineralisation (caries), but also linked to the investigations of other mineralised tissues such as dentine, bone, etc. The modelling approaches informed by these observations are also overviewed. The strategic aim of the present review was to identify and evaluate prospective avenues for analysing dental tissues and developing treatments and prophylaxis for improved dental health.

11.
ACS Appl Mater Interfaces ; 15(31): 37259-37273, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524079

RESUMO

Caries, a major global disease associated with dental enamel demineralization, remains insufficiently understood to devise effective prevention or minimally invasive treatment. Understanding the ultrastructural changes in enamel is hampered by a lack of nanoscale characterization of the chemical spatial distributions within the dental tissue. This leads to the requirement to develop techniques based on various characterization methods. The purpose of the present study is to demonstrate the strength of analytic methods using a correlative technique on a single sample of human dental enamel as a specific case study to test the accuracy of techniques to compare regions in enamel. The science of the different techniques is integrated to genuinely study the enamel. The hierarchical structures within carious tissue were mapped using the combination of focused ion beam scanning electron microscopy with synchrotron X-ray tomography. The chemical changes were studied using scanning X-ray fluorescence (XRF) and X-ray wide-angle and small-angle scattering using a beam size below 80 nm for ångström and nanometer length scales. The analysis of XRF intensity gradients revealed subtle variations of Ca intensity in carious samples in comparison with those of normal mature enamel. In addition, the pathways for enamel rod demineralization were studied using X-ray ptychography. The results show the chemical and structural modification in carious enamel with differing locations. These results reinforce the need for multi-modal approaches to nanoscale analysis in complex hierarchically structured materials to interpret the changes of materials. The approach establishes a meticulous correlative characterization platform for the analysis of biomineralized tissues at the nanoscale, which adds confidence in the interpretation of the results and time-saving imaging techniques. The protocol demonstrated here using the dental tissue sample can be applied to other samples for statistical study and the investigation of nanoscale structural changes. The information gathered from the combination of methods could not be obtained with traditional individual techniques.


Assuntos
Cárie Dentária , Esmalte Dentário , Humanos , Microscopia Eletrônica de Varredura , Espalhamento a Baixo Ângulo , Raios X , Microscopia Confocal , Esmalte Dentário/diagnóstico por imagem , Cárie Dentária/diagnóstico por imagem
12.
J Bone Miner Metab ; 30(5): 602-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22752127

RESUMO

This study investigated the effects of different frequencies of low intensity ultrasound on osteoblast migration using an in vitro scratch-wound healing assay. Mouse calvarial-derived MC3T3-E1 osteoblasts in culture were exposed to continuous 45 kHz ultrasound (25 mW/cm(2)) or pulsed 1 MHz ultrasound (250 mW/cm(2)) for 30 min followed by 2 days' culture. Ultrasound treatment with either kHz or MHz output similarly and significantly increased cell numbers after 2 days in culture compared with untreated control cultures. In the scratch-wound healing assay the presence of the cell proliferation inhibitor mitomycin C (MMC) did not influence scratch-wound closure in control cultures indicating that cell migration was responsible for the in vitro wound healing. Application of ultrasound significantly stimulated wound closure. MMC did not affect kHz-stimulated in vitro wound healing; however, MMC reduced in part the scratch-wound closure rate in MHz-treated cultures suggesting that enhanced cell proliferation as well as migration was involved in the healing promoted by MHz ultrasound. In conclusion, both continuous kHz and pulsed MHz ultrasound promoted osteoblastic migration; however, subtle differences were apparent in the manner the different ultrasound regimens enhanced in vitro scratch-wound healing.


Assuntos
Movimento Celular/fisiologia , Osteoblastos/citologia , Osteoblastos/diagnóstico por imagem , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Camundongos , Mitomicina/farmacologia , Osteoblastos/efeitos dos fármacos , Ultrassom/métodos , Ultrassonografia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia
13.
Tissue Eng Part C Methods ; 28(11): 599-609, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36047814

RESUMO

Air-liquid interface (ALI) cultures are used to produce stratified epithelial tissues in vitro, notably for the production of oral mucosal equivalents. Currently, there are few purpose-built devices, which aim to enhance the ease and reproducibility of generating such tissue. Most ALI cultures utilize stainless steel grids or cell culture inserts to elevate the matrix or scaffold to the surface of the culture media. In this study, a novel buoyant epithelial culture device (BECD) was designed to both contain a fibroblast-seeded collagen hydrogel and float in culture media, thereby automatically maintaining the ALI without further user intervention. BECDs aim to mitigate several issues associated with ALI culture; reducing the chance of media flooding the epithelial layer from physical disturbance, reducing technique sensitivity for less-experienced users, and improving the reproducibility of the epithelia generated. H400 oral squamous cell carcinoma cells cultured in BECDs for 7, 14, and 21 days showed continuous increase in epithelial tissue thickness with expected localization of epithelial differentiation markers: cytokeratin 5, involucrin, and E-cadherin. Fused filament fabrication three-dimensional printing with polypropylene used in BECD production allows for rapid turnover and design iteration, presenting a versatile, adaptable, and useful tool for application in in vitro cell culture.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Células Epiteliais , Reprodutibilidade dos Testes , Epitélio , Meios de Cultura , Impressão Tridimensional , Células Cultivadas
14.
Comput Med Imaging Graph ; 88: 101853, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33508566

RESUMO

Human Papilloma Virus (HPV) is a major risk factor for the development of oropharyngeal cancer. Automatic detection of HPV in digitized pathology tissues using in situ hybridisation (ISH) is a difficult task due to the variability and complexity of staining patterns as well as the presence of imaging and staining artefacts. This paper proposes an intelligent image analysis framework to determine HPV status in digitized samples of oropharyngeal cancer tissue micro-arrays (TMA). The proposed pipeline mixes handcrafted feature extraction with a deep learning for epithelial region segmentation as a preliminary step. We apply a deep central attention learning technique to segment epithelial regions and within those assess the presence of regions representing ISH products. We then extract relevant morphological measurements from those regions which are then input into a supervised learning model for the identification of HPV status. The performance of the proposed method has been evaluated on 2009 TMA images of oropharyngeal carcinoma tissues captured with a ×20 objective. The experimental results show that our technique provides around 91% classification accuracy in detecting HPV status when compared with the histopatholgist gold standard. We also tested the performance of end-to-end deep learning classification methods to assess HPV status by learning directly from the original ISH processed images, rather than from the handcrafted features extracted from the segmented images. We examined the performance of sequential convolutional neural networks (CNN) architectures including three popular image recognition networks (VGG-16, ResNet and Inception V3) in their pre-trained and trained from scratch versions, however their highest classification accuracy was inferior (78%) to the hybrid pipeline presented here.


Assuntos
Alphapapillomavirus , Carcinoma , Aprendizado Profundo , Neoplasias Orofaríngeas , Atenção , Humanos , Neoplasias Orofaríngeas/diagnóstico por imagem , Papillomaviridae
15.
Dent Mater ; 37(11): 1714-1723, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34548177

RESUMO

OBJECTIVE: Dental erosion is a common oral condition caused by chronic exposure to acids from intrinsic/extrinsic sources. Repeated acid exposure can lead to the irreversible loss of dental hard tissues (enamel, dentine, cementum). Dentine can become exposed to acid following severe enamel erosion, crown fracture, or gingival recession. Causing hypersensitivity, poor aesthetics, and potential pulp involvement. Improving treatments that can restore the structural integrity and aesthetics are therefore highly desirable. Such developments require a good understanding of how acid demineralisation progresses where relatively little is known in terms of intertubular dentine (ITD) and peritubular dentine (PTD) microstructure. To obtain further insight, this study proposes a new in vitro method for performing demineralisation studies of dentine. METHODS: Advanced high-speed synchrotron X-ray microtomography (SXM), with high spatial (0.325 µm) and temporal (15 min) resolution, was used to conduct the first in vitro, time-resolved 3D (4D) study of the microstructural changes in the ITD and PTD phases of human dentine samples (∼0.8 × 0.8 × 5 mm) during 6 h of continuous acid exposure. RESULTS: Different demineralisation rates of ITD (1.79 µm/min) and PTD (1.94 µm/min) and their progressive width-depth profiles were quantified, which provide insight for understanding the mechanisms of dentine demineralisation. SIGNIFICANCE: Insights obtained from morphological characterisations and the demineralisation process of ITD and PTD during acid demineralisation would help understand the demineralisation process and potentially aid in developing new therapeutic dentine treatments. This method enables continuous examination of relatively large volumes of dentine during demineralisation and also demonstrates the potential for studying the remineralisation process of proposed therapeutic dentine treatments.


Assuntos
Desmineralização do Dente , Dente , Esmalte Dentário , Dentina , Humanos , Síncrotrons , Desmineralização do Dente/induzido quimicamente
16.
Acta Biomater ; 120: 240-248, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32438107

RESUMO

Acid-induced enamel demineralisation affects many individuals either by exposure to acidic diets, acidic gas pollution (dental erosion) or to dental plaque acids (dental caries). This study aimed to develop in situ X-ray and light imaging methods to determine progression of enamel demineralisation and the dynamic relationship between acid pH and mineral density. Hourly digital microradiograph time-lapse sequences showed the depth of enamel demineralisation in 500 µm thick sections progressed with time from the surface towards the dentine following a power-law function, which was 21% faster than the lateral demineralisation progression after exposure for 85 h to lactic acid (10%, pH 2.2). The minimum greyscale remaining (mineral content) within the induced enamel lesion followed an exponential decay, while the accumulated total greyscale loss with time was linear, which showed a constant anisotropic mineral release within the enamel architecture. This 85 h demineralisation method studied by polarised light microscopy time-lapse sequences showed that once the demineralisation front reached the enamel Hunter-Schreger bands, there was preferential demineralisation along those bands. Mineral density loss was linear with increasing pH acidity between pH 5.2 and pH 4.0 (with 0.4 pH increments) when incubated over a 3-week period exposed to 0.5% lactic acid. At pH 4.0, there was complete mineral loss in the centre of the demineralised area after the 3-week period and the linear function intercepted the x-axis at ~ pH 5.5, near the critical pH for hydroxyapatite (HAp). These observations showed how intrinsic enamel structure and pH affected the progression of demineralisation. STATEMENT OF SIGNIFICANCE: Hydroxyapatite crystallites (HAp) in human enamel dissolve when exposed to an acidic environment but little is known about how the intrinsic structures in enamel and pH influence the demineralisation kinetics. We have developed a time-lapse in situ microradiography method to quantify microscopic anisotropic mineral loss dynamics in response to an acid-only caries model. Correlation with polarised light microscopy time-lapse sequences showed that larger structures in enamel also influence demineralisation progression as demineralisation occurred preferentially along the Hunter-Schreger bands (decussating prismatic enamel). The pH-controlled enamel mineral release in a linear manner quantifying the relationship between HAp orientation and acid solubility. These findings should direct the development of improved anti-demineralisation/ remineralisation treatments to retain/ restore the natural intrinsic enamel structure.


Assuntos
Cárie Dentária , Desmineralização do Dente , Esmalte Dentário/diagnóstico por imagem , Humanos , Concentração de Íons de Hidrogênio , Desmineralização do Dente/induzido quimicamente , Desmineralização do Dente/diagnóstico por imagem , Raios X
17.
J Adv Res ; 29: 167-177, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33842014

RESUMO

In the past years, a significant amount of effort has been directed at the observation and characterisation of caries using experimental techniques. Nevertheless, relatively little progress has been made in numerical modelling of the underlying demineralisation process. The present study is the first attempt to provide a simplified calculation framework for the numerical simulation of the demineralisation process at the length scale of enamel rods and its validation by comparing the data with statistical analysis of experimental results. FEM model was employed to simulate a time-dependent reaction-diffusion equation process in which H ions diffuse and cause demineralisation of the enamel. The local orientation of the hydroxyapatite crystals was taken into account. Experimental analysis of the demineralising front was performed using advanced high-resolution synchrotron X-ray micro-Computed Tomography. Further experimental investigations were conducted by means of SEM and STEM imaging techniques. Besides establishing and validating the new modelling framework, insights into the role of the etchant solution pH level were obtained. Additionally, some light was shed on the origin of different types of etching patterns by simulating the demineralisation process at different etching angles of attack. The implications of this study pave the way for simulations of enamel demineralisation within different complex scenarios and across the range of length scales. Indeed, the framework proposed can incorporate the presence of chemical species other than H ions and their diffusion and reaction leading to dissolution and re-precipitation of hydroxyapatite. It is the authors' hope and aspiration that ultimately this work will help identify new ways of controlling and preventing caries.

18.
Nat Methods ; 8(11): 891; author reply 891-2, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22036741
19.
J Clin Periodontol ; 36(1): 44-50, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19017036

RESUMO

BACKGROUND: It is stated that the oscillation patterns of dental ultrasonic scalers are dependent upon whether the instrument is of a magnetostrictive or piezoelectric design. These patterns are then linked to differences in root surface debridement in vitro. MATERIAL AND METHODS: Piezoelectric (A, P) and magnetostrictive (Slimline, TFI-3) ultrasonic scalers (three of each) were evaluated, loaded (100 g/200 g) and unloaded with a 3D laser vibrometer. Loads were applied to the probe tips via teeth mounted in a load-measuring device. RESULTS: Elliptical motion was demonstrated for all probes under loaded and unloaded conditions. Loading flattened the elliptical motion along the length of the probe. Unloaded, Slimline tip 1 was significantly different to tips 2 and 3 (p<0.0001). There were no differences between the A-tips (p>0.207). All TFI-3 tips were different to each other (p<0.0001). P-tips 1 and 2 were different to each other (p=0.046). Loaded, Slimline tips were different to each other (p<0.001). There were no differences between the P probes (p>0.867). Generator power increased all Slimline and P tip vibrations (p<0.0001). CONCLUSIONS: Probe oscillation patterns are independent of ultrasound production mechanism and are dependent upon probe shape and generator power. Loaded probes oscillated with an elliptical pattern.


Assuntos
Raspagem Dentária/instrumentação , Oscilometria/instrumentação , Terapia por Ultrassom/instrumentação , Vibração , Instrumentos Odontológicos , Holografia/instrumentação , Imageamento Tridimensional , Vibração/uso terapêutico
20.
J Clin Periodontol ; 35(8 Suppl): 22-8, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18724839

RESUMO

OBJECTIVES: The primary aim was: "Does power-driven pocket/root instrumentation offer a clinical advantage over hand instrumentation"? Secondary aim was to update knowledge base of power-driven instrumentation post Tunkel et al. (2002). MATERIAL AND METHODS: A literature search of power-driven instruments (in vitro, in vivo and controlled clinical trials) was performed from April 2001 using similar criteria to Tunkel et al. (2002). Primary outcome was whether power-driven instruments offered an advantage over hand instrumentation; secondary outcomes were effect on root surface, effectiveness of new instrument designs, and role of biophysical effects such as cavitation. RESULTS: From a total of 41 studies, 14 studies involved comparison of power-driven devices with hand instrumentation for non-surgical therapy. These were subdivided into new designs of power instrumentation, full-mouth debridement and irrigation and patient acceptance. Use of power-driven instrumentation provides similar clinical outcomes compared with hand instrumentation. Difficulty of pooling studies continues to hinder the drawing of definitive conclusions. CONCLUSION: Newer designs of powered instruments have not shown any benefit when compared with other ultrasonic devices in non-surgical periodontal therapy. New in vitro research shows there is variation in the performance of different tip designs and generators, but its clinical relevance remains unknown.


Assuntos
Raspagem Dentária/instrumentação , Periodontia/instrumentação , Aplainamento Radicular/instrumentação , Desenho de Equipamento , Humanos , Terapia por Ultrassom/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA