Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(26): 39112-39127, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379468

RESUMO

There are several applications for enhancement cavities where a beam of large size (several millimeters) resonates, in particular in atomic physics. However, reaching large beam waists in a compact geometry (less than a meter long) typically brings the resonator close to the degeneracy limit. Here we experimentally study a degenerate optical cavity, 44-cm long and consisting of two flat mirrors placed in the focal planes of a lens, in a regime of intermediate finesse (∼150). We study the impact of the longitudinal misalignement on the optical gain, for different input beam waists up to 5.6 mm, and find data consistent with the prediction of a model based on ABCD propagation of Gaussian beams. We reach an optical gain of 26 for a waist of 1.4 mm, which can have an impact on several applications, in particular atom interferometry. We numerically investigate the optical gain reduction for large beam waists using the angular spectrum method to consider the effects of optical aberrations, which play an important role in such a degenerate cavity. Our calculations quantitatively reproduce the experimental data and will provide a key tool for designing enhancement cavities close to the degeneracy limit. As an illustration, we discuss the application of this resonator geometry to the enhancement of laser beams with top-hat intensity profiles.

2.
Opt Lett ; 37(6): 1005-7, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22446205

RESUMO

We report the relative frequency stabilization of a distributed feedback erbium-doped fiber laser on an optical cavity by serrodyne frequency shifting. A correction bandwidth of 2.3 MHz and a dynamic range of 220 MHz are achieved, which leads to a strong robustness against large disturbances up to high frequencies. We demonstrate that serrodyne frequency shifting reaches a higher correction bandwidth and lower relative frequency noise level compared to a standard acousto-optical modulator based scheme. Our results allow us to consider promising applications in the absolute frequency stabilization of lasers on optical cavities.

3.
Sci Adv ; 8(23): eabn8009, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35687688

RESUMO

A rotating interferometer with paths that enclose a physical area exhibits a phase shift proportional to this area and to the rotation rate of the frame. Understanding the origin of this so-called Sagnac effect has played a key role in the establishment of the theory of relativity and has pushed for the development of precision optical interferometers. The fundamental importance of the Sagnac effect motivated the realization of experiments to test its validity for waves beyond optical, but precision measurements remained a challenge. Here, we report the accurate test of the Sagnac effect for matter waves, by using a Cesium atom interferometer featuring a geometrical area of 11 cm2 and two sensitive axes of measurements. We measure the phase shift induced by Earth's rotation and find agreement with the theoretical prediction at an accuracy level of 25 parts per million. Beyond the importance for fundamental physics, our work opens practical applications in seismology and geodesy.

4.
Sci Rep ; 12(1): 19000, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347902

RESUMO

The Matter-wave laser Interferometric Gravitation Antenna (MIGA) is an underground instrument using cold-atom interferometry to perform precision measurements of gravity gradients and strains. Following its installation at the low noise underground laboratory LSBB in the South-East of France, it will serve as a prototype for gravitational wave detectors with a horizontal baseline of 150 meters. Three spatially separated cold-atom interferometers will be driven by two common counter-propagating lasers to perform a measurement of the gravity gradient along this baseline. This article presents the cold-atom sources of MIGA, focusing on the design choices, the realization of the systems, the performances and the integration within the MIGA instrument.

5.
Sci Rep ; 8(1): 12300, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120334

RESUMO

Gravimetry is a well-established technique for the determination of sub-surface mass distribution needed in several fields of geoscience, and various types of gravimeters have been developed over the last 50 years. Among them, quantum gravimeters based on atom interferometry have shown top-level performance in terms of sensitivity, long-term stability and accuracy. Nevertheless, they have remained confined to laboratories due to their complex operation and high sensitivity to the external environment. Here we report on a novel, transportable, quantum gravimeter that can be operated under real world conditions by non-specialists, and measure the absolute gravitational acceleration continuously with a long-term stability below 10 nm.s-2 (1 µGal). It features several technological innovations that allow for high-precision gravity measurements, while keeping the instrument light and small enough for field measurements. The instrument was characterized in detail and its stability was evaluated during a month-long measurement campaign.

6.
Nat Commun ; 7: 13786, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941928

RESUMO

Quantum technology based on cold-atom interferometers is showing great promise for fields such as inertial sensing and fundamental physics. However, the finite free-fall time of the atoms limits the precision achievable on Earth, while in space interrogation times of many seconds will lead to unprecedented sensitivity. Here we realize simultaneous 87Rb-39K interferometers capable of operating in the weightless environment produced during parabolic flight. Large vibration levels (10-2 g Hz-1/2), variations in acceleration (0-1.8 g) and rotation rates (5° s-1) onboard the aircraft present significant challenges. We demonstrate the capability of our correlated quantum system by measuring the Eötvös parameter with systematic-limited uncertainties of 1.1 × 10-3 and 3.0 × 10-4 during standard- and microgravity, respectively. This constitutes a fundamental test of the equivalence principle using quantum sensors in a free-falling vehicle. Our results are applicable to inertial navigation, and can be extended to the trajectory of a satellite for future space missions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA