Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34016751

RESUMO

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Interleucina-1beta/genética , Neoplasias Pulmonares/tratamento farmacológico , Oxidiazóis/farmacologia , Pirimidinas/farmacologia , Sinteninas/genética , Animais , Antineoplásicos/síntese química , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quimiocina CCL11/genética , Quimiocina CCL11/imunologia , Quimiocina CCL17/genética , Quimiocina CCL17/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Subunidade p19 da Interleucina-23/genética , Subunidade p19 da Interleucina-23/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Oxidiazóis/síntese química , Pirimidinas/síntese química , Transdução de Sinais , Sinteninas/antagonistas & inibidores , Sinteninas/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Biol Chem ; 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139747

RESUMO

This article has been withdrawn by Aiman Alhazmi, Marissa Mack, Tiffany Rolle, Jordan Hiegel, Syed Haqqani, Nga Dao, Farheen Zaman, Nak-Kyeong Kim, Neel Scarsdale, Charles Lyons, and Joseph Landry. Some of the genome-wide data sets were flawed and were not analyzed correctly. The withdrawing authors are in the process of correcting the data sets and re-analyzing them for resubmission.

3.
Genes Dev ; 25(3): 275-86, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21289071

RESUMO

The maturation of T cells requires signaling from both cytokine and T-cell receptors to gene targets in chromatin, but how chromatin architecture influences this process is largely unknown. Here we show that thymocyte maturation post-positive selection is dependent on the nucleosome remodeling factor (NURF). Depletion of Bptf (bromodomain PHD finger transcription factor), the largest NURF subunit, in conditional mouse mutants results in developmental arrest beyond the CD4(+) CD8(int) stage without affecting cellular proliferation, cellular apoptosis, or coreceptor gene expression. In the Bptf mutant, specific subsets of genes important for thymocyte development show aberrant expression. We also observed defects in DNase I-hypersensitive chromatin structures at Egr1, a prototypical Bptf-dependent gene that is required for efficient thymocyte development. Moreover, chromatin binding of the sequence-specific factor Srf (serum response factor) to Egr1 regulatory sites is dependent on Bptf function. Physical interactions between NURF and Srf suggest a model in which Srf recruits NURF to facilitate transcription factor binding at Bptf-dependent genes. These findings provide evidence for causal connections between NURF, transcription factor occupancy, and gene regulation during thymocyte development.


Assuntos
Antígenos Nucleares/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antígenos Nucleares/genética , DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Timo/citologia , Fatores de Transcrição/genética
4.
BMC Biol ; 14: 18, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26975355

RESUMO

BACKGROUND: Understanding how embryos specify asymmetric axes is a major focus of biology. While much has been done to discover signaling pathways and transcription factors important for axis specification, comparatively little is known about how epigenetic regulators are involved. Epigenetic regulators operate downstream of signaling pathways and transcription factors to promote nuclear processes, most prominently transcription. To discover novel functions for these complexes in axis establishment during early embryonic development, we characterized phenotypes of a mouse knockout (KO) allele of the chromatin remodeling Ino80 ATPase. RESULTS: Ino80 KO embryos implant, but fail to develop beyond the egg cylinder stage. Ino80 KO embryonic stem cells (ESCs) are viable and maintain alkaline phosphatase activity, which is suggestive of pluripotency, but they fail to fully differentiate as either embryoid bodies or teratomas. Gene expression analysis of Ino80 KO early embryos by in situ hybridization and embryoid bodies by RT-PCR shows elevated Bmp4 expression and reduced expression of distal visceral endoderm (DVE) markers Cer1, Hex, and Lefty1. In culture, Bmp4 maintains stem cell pluripotency and when overexpressed is a known negative regulator of DVE differentiation in the early embryo. Consistent with the early embryo, we observed upregulated Bmp4 expression and down-regulated Cer1, Hex, and Lefty1 expression when Ino80 KO ESCs are differentiated in a monolayer. Molecular studies in these same cells demonstrate that Ino80 bound to the Bmp4 promoter regulates its chromatin structure, which correlates with enhanced SP1 binding. These results in combination suggest that Ino80 directly regulates the chromatin structure of the Bmp4 promoter with consequences to gene expression. CONCLUSIONS: In contrast to Ino80 KO differentiated cells, our experiments show that undifferentiated Ino80 KO ESCs are viable, but fail to differentiate in culture and in the early embryo. Ino80 KO ESCs and the early embryo up-regulate Bmp4 expression and down-regulate the expression of DVE markers Cer1, Hex and Lefty1. Based on this data, we propose a model where the Ino80 chromatin remodeling complex represses Bmp4 expression in the early embryo, thus promoting DVE differentiation and successful proximal-distal axis establishment. These results are significant because they show that epigenetic regulators have specific roles in establishing embryonic axes. By further characterizing these complexes, we will deepen our understanding of how the mammalian embryo is patterned by epigenetic regulators.


Assuntos
Adenosina Trifosfatases/genética , Proteína Morfogenética Óssea 4/genética , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA , Ectoderma/anormalidades , Ectoderma/citologia , Ectoderma/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Gastrulação , Camundongos , Camundongos Knockout , Camundongos SCID , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
5.
Cancer Res ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312191

RESUMO

There is a significant sex-bias in lung cancer with males showing increased mortality compared to females. A better mechanistic understanding of these differences could help identify therapeutic targets to personalize cancer therapies to each sex. After observing a clear sex-bias in humanized mice, with male patient-derived xenograft (PDX) lung tumors being more progressive and deadlier than female PDX lung tumors, we identified mouse tumor models of lung cancer with the same sex-bias. This sex-bias was not observed in models of breast, colon, melanoma, and renal cancers. In vivo, the sex-bias in growth and lethality required intact ovaries, functional innate natural killer (NK) cells and monocytes/macrophages, and the activating receptor NKG2D. Ex vivo cell culture models were sensitized to the anti-cancer effects of NKG2D-mediated NK cell and macrophage killing through the TRAIL-BCL-XL axis when cultured with serum from female mice with intact ovaries. In both flank and orthotopic models, the BCL-XL inhibitor navitoclax (ABT-263) improved tumor growth control in female mice and required NK cells, macrophages, and the TRAIL signaling pathway. This research suggests that navitoclax and TRAIL pathway agonists could be used as a personalized therapy to improve outcomes in women with lung cancer.

6.
Cancers (Basel) ; 15(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37370722

RESUMO

Sex disparities in the incidence and mortality of lung cancer have been observed since cancer statistics have been recorded. Social and economic differences contribute to sex disparities in lung cancer incidence and mortality, but evidence suggests that there are also underlying biological differences that contribute to the disparity. This review summarizes biological differences which could contribute to the sex disparity. Sex hormones and other biologically active molecules, tumor cell genetic differences, and differences in the immune system and its response to lung cancer are highlighted. How some of these differences contribute to disparities in the response to therapies, including cytotoxic, targeted, and immuno-therapies, is also discussed. We end the study with a discussion of our perceived future directions to identify the key biological differences which could contribute to sex disparities in lung cancer and how these differences could be therapeutically leveraged to personalize lung cancer treatment to the individual sexes.

7.
Epigenetics ; 17(12): 1753-1773, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35608069

RESUMO

Although epigenome-wide association studies (EWAS) have been successful in identifying DNA methylation (DNAm) patterns associated with disease states, any further characterization of etiologic mechanisms underlying disease remains elusive. This knowledge gap does not originate from a lack of DNAm-trait associations, but rather stems from study design issues that affect the interpretability of EWAS results. Despite known limitations in predicting the function of a particular CpG site, most EWAS maintain the broad assumption that altered DNAm results in a concomitant change of transcription at the most proximal gene. This study integrated DNAm and gene expression (GE) measurements in two cohorts, the Adolescent and Young Adult Twin Study (AYATS) and the Pregnancy, Race, Environment, Genes (PREG) study, to improve the understanding of epigenomic regulatory mechanisms. CpG sites associated with GE in cis were enriched in areas of transcription factor binding and areas of intermediate-to-low CpG density. CpG sites associated with trans GE were also enriched in areas of known regulatory significance, including enhancer regions. These results highlight issues with restricting DNAm-transcript annotations to small genomic intervals and question the validity of assuming a cis DNAm-GE pathway. Based on these findings, the interpretation of EWAS results is limited in studies without multi-omic support and further research should identify genomic regions in which GE-associated DNAm is overrepresented. An in-depth characterization of GE-associated CpG sites could improve predictions of the downstream functional impact of altered DNAm and inform best practices for interpreting DNAm-trait associations generated by EWAS.


Assuntos
Metilação de DNA , Epigênese Genética , Adolescente , Humanos , Adulto Jovem , Epigenômica , Expressão Gênica , Estudo de Associação Genômica Ampla , Fatores de Transcrição/genética , Feminino , Gravidez , Estudos em Gêmeos como Assunto
8.
Cancers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326649

RESUMO

Progression-elevated gene-3 (PEG-3) and rat growth arrest and DNA damage-inducible gene-34 (GADD34) display significant sequence homology with regulation predominantly transcriptional. The rat full-length (FL) and minimal (min) PEG-3 promoter display cancer-selective expression in rodent and human tumors, allowing for cancer-directed regulation of transgenes, viral replication and in vivo imaging of tumors and metastases in animals, whereas the FL- and min-GADD34-Prom lack cancer specificity. Min-PEG-Prom and min-GADD34-Prom have identical sequences except for two single-point mutation differences (at -260 bp and +159 bp). Engineering double mutations in the min-GADD34-Prom produce the GAPE-Prom. Changing one base pair (+159) or both point mutations in the min-GADD34-Prom, but not the FL-GADD34-Prom, results in cancer-selective transgene expression in diverse cancer cells (including prostate, breast, pancreatic and neuroblastoma) vs. normal counterparts. Additionally, we identified a GATA2 transcription factor binding site, promoting cancer specificity when both min-PEG-Prom mutations are present in the GAPE-Prom. Taken together, introducing specific point mutations in a rat min-GADD34-Prom converts this non-cancer-specific promoter into a cancer-selective promoter, and the addition of GATA2 with existing AP1 and PEA3 transcription factors enhances further cancer-selective activity of the GAPE-Prom. The GAPE-Prom provides a genetic tool to specifically regulate transgene expression in cancer cells.

9.
J Med Chem ; 64(18): 13902-13917, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34515477

RESUMO

The nucleosome remodeling factor (NURF) alters chromatin accessibility through interactions with its largest subunit,the bromodomain PHD finger transcription factor BPTF. BPTF is overexpressed in several cancers and is an emerging anticancer target. Targeting the BPTF bromodomain presents a potential strategy for its inhibition and the evaluation of its functional significance; however, inhibitor development for BPTF has lagged behind those of other bromodomains. Here we describe the development of pyridazinone-based BPTF inhibitors. The lead compound, BZ1, possesses a high potency (Kd = 6.3 nM) and >350-fold selectivity over BET bromodomains. We identify an acidic triad in the binding pocket to guide future designs. We show that our inhibitors sensitize 4T1 breast cancer cells to doxorubicin but not BPTF knockdown cells, suggesting a specificity to BPTF. Given the high potency and good physicochemical properties of these inhibitors, we anticipate that they will be useful starting points for chemical tool development to explore the biological roles of BPTF.


Assuntos
Antineoplásicos/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Piridazinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Antígenos Nucleares/química , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Desenho de Fármacos , Camundongos , Estrutura Molecular , Proteínas do Tecido Nervoso/química , Domínios Proteicos , Piridazinas/química , Piridazinas/toxicidade , Relação Estrutura-Atividade , Fatores de Transcrição/química
10.
J Immunother Cancer ; 9(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33468554

RESUMO

BACKGROUND: The efficacy of cancer immunotherapy can be limited by the poor immunogenicity of cancer and the immunosuppressive tumor microenvironment (TME). Immunologically programming the TME and creating an immune-inflamed tumor phenotype is critical for improving the immune-responsiveness of cancers. Here, we interrogate the immune modulator Flagrp170, engineered via incorporation of a pathogen-associated molecular pattern (ie, flagellin) into an immunostimulatory chaperone molecule, in transforming poorly immunogenic tumors and establishing a highly immunostimulatory milieu for immune augmentation. METHODS: Multiple murine cancer models were used to evaluate the immunostimulatory activity, antitumor potency, and potential side effects of Flagrp170 on administration into the tumors using a replication impaired adenovirus. Antibody neutralization and mice deficient in pattern recognition receptors, that is, toll-like receptor 5 (TLR5) and NOD like receptor (NLR) family caspase activation and recruitment domain (CARD) domain-containing protein 4 (NLRC4), both of which can recognize flagellin, were employed to understand the immunological mechanism of action of the Flagrp170. RESULTS: Intratumoral delivery of mouse or human version of Flagrp170 resulted in robust inhibition of multiple malignancies including head and neck squamous cell carcinoma and breast cancer, without tissue toxicities. This in situ Flagrp170 treatment induced a set of cytokines in the TME known to support Th1/Tc1-dominant antitumor immunity. Additionally, granulocyte macrophage colony-stimulating factor derived from mobilized CD8+ T cells was involved in the therapeutic activity of Flagrp170. We also made a striking finding that NLRC4, not TLR5, is required for Flagrp170-mediated antitumor immune responses. CONCLUSION: Our results elucidate a novel immune-potentiating activity of Flagrp170 via engaging the innate pattern recognition receptor NLRC4, and support its potential clinical use to reshape cancer immune phenotype for overcoming therapeutic resistance.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Neoplasias da Mama/terapia , Proteínas de Ligação ao Cálcio/genética , Flagelina/genética , Proteínas de Choque Térmico HSP70/genética , Neoplasias de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Adenoviridae/genética , Animais , Anticorpos Neutralizantes/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Flagelina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Camundongos , Proteínas Recombinantes , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Receptor 5 Toll-Like/genética , Resultado do Tratamento , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cancer Res ; 19(8): 1338-1349, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811160

RESUMO

Epigenetic regulators can modulate the effects of cancer therapeutics. To further these observations, we discovered that the bromodomain PHD finger transcription factor subunit (BPTF) of the nucleosome remodeling factor (NURF) promotes resistance to doxorubicin, etoposide, and paclitaxel in the 4T1 breast tumor cell line. BPTF functions in promoting resistance to doxorubicin and etoposide, but not paclitaxel, and may be selective to cancer cells, as a similar effect was not observed in embryonic stem cells. Sensitization to doxorubicin and etoposide with BPTF knockdown (KD) was associated with increased DNA damage, topoisomerase II (TOP2) crosslinking and autophagy; however, there was only a modest increase in apoptosis and no increase in senescence. Sensitization to doxorubicin was confirmed in vivo with the syngeneic 4T1 breast tumor model using both genetic and pharmacologic inhibition of BPTF. The effects of BPTF inhibition in vivo are autophagy dependent, based on genetic autophagy inhibition. Finally, treatment of 4T1, 66cl4, 4T07, MDA-MB-231, but not ER-positive 67NR and MCF7 breast cancer cells with the selective BPTF bromodomain inhibitor, AU1, recapitulates genetic BPTF inhibition, including in vitro sensitization to doxorubicin, increased TOP2-DNA crosslinks and DNA damage. Taken together, these studies demonstrate that BPTF provides resistance to the antitumor activity of TOP2 poisons, preventing the resolution of TOP2 crosslinking and associated autophagy. These studies suggest that BPTF can be targeted with small-molecule inhibitors to enhance the effectiveness of TOP2-targeted cancer chemotherapeutic drugs. IMPLICATIONS: These studies suggest NURF can be inhibited pharmacologically as a viable strategy to improve chemotherapy effectiveness.


Assuntos
Autofagia/genética , DNA Topoisomerases Tipo II/genética , Nucleossomos/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Antígenos Nucleares/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagia/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
12.
Biochem Pharmacol ; 162: 202-212, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30576620

RESUMO

H460 non-small cell lung, HCT116 colon and 4T1 breast tumor cell lines induced into senescence by exposure to either etoposide or doxorubicin were able to recover proliferative capacity both in mass culture and when enriched for the senescence-like phenotype by flow cytometry (based on ß-galactosidase staining and cell size, and a senescence-associated reporter, BTG1-RFP). Recovery was further established using both real-time microscopy and High-Speed Live-Cell Interferometry (HSLCI) and was shown to be accompanied by the attenuation of the Senescence-Associated Secretory Phenotype (SASP). Cells enriched for the senescence-like phenotype were also capable of forming tumors when implanted in both immunodeficient and immunocompetent mice. As chemotherapy-induced senescence has been identified in patient tumors, our results suggest that certain senescence-like phenotypes may not reflect a terminal state of growth arrest, as cells that recover with self-renewal capacity may ultimately contribute to disease recurrence.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Carga Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
13.
Adv Cancer Res ; 158: xiii-xvi, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36990540
14.
Biochem Pharmacol ; 153: 46-50, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29408462

RESUMO

Autophagy, a virtually uniform response to external stress such as that induced by chemotherapy and radiation, is generally considered to be cytoprotective in function, providing a foundation for multiple clinical trials designed to enhance therapeutic response via autophagy inhibition. However, this cell autonomous response can also be cytotoxic or nonprotective, with the consequence that autophagy inhibition would be counterproductive or ineffective, respectively. The non-cell autonomous function of autophagy remains quite controversial, with evidence both for and against autophagy-mediated activation of the immune system. If autophagy inhibition antagonizes the immune response, this would likely interfere with the potential sensitization resulting from suppression of the cell autonomous protective function. An additional complication, which has rarely been considered, is the nature of the contribution of therapy-induced autophagy in the tumor microenvironment, particularly the tumor stroma. Taken together, it is likely that the outcome of the current clinical trials, whether positive or negative, will be difficult to interpret given the complexity of the role of autophagy relating to the tumor cell (cell autonomous), the immune system (cell non-autonomous) and the tumor microenvironment.


Assuntos
Autofagia/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Ensaios Clínicos como Assunto/métodos , Humanos , Neoplasias/diagnóstico , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos
15.
Front Oncol ; 8: 164, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868482

RESUMO

In addition to promoting various forms of cell death, most conventional anti-tumor therapies also promote senescence. There is now extensive evidence that therapy-induced senescence (TIS) might be transient, raising the concern that TIS could represent an undesirable outcome of therapy by providing a mechanism for tumor dormancy and eventual disease recurrence. The senescence-associated secretory phenotype (SASP) is a hallmark of TIS and may contribute to aberrant effects of cancer therapy. Here, we propose that the SASP may also serve as a major driver of escape from senescence and the re-emergence of proliferating tumor cells, wherein factors secreted from the senescent cells contribute to the restoration of tumor growth in a non-cell autonomous fashion. Accordingly, anti-SASP therapies might serve to mitigate the deleterious outcomes of TIS. In addition to providing an overview of the putative actions of the SASP, we discuss recent efforts to identify and eliminate senescent tumor cells.

16.
Adv Cancer Res ; 138: 1-39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551125

RESUMO

Cancer chemotherapeutic drugs have greatly advanced our ability to successfully treat a variety of human malignancies. The different forms of stress produced by these agents in cancer cells result in both cell autonomous and cell nonautonomous effects. Desirable cell autonomous effects include reduced proliferative potential, cellular senescence, and cell death. More recently recognized cell nonautonomous effects, usually in the form of stimulating an antitumor immune response, have significant roles in therapeutic efficiency for a select number of chemotherapies. Unfortunately, the success of these therapeutics is not universal as not all tumors respond to treatment, and those that do respond will frequently relapse into therapy-resistant disease. Numerous strategies have been developed to sensitize tumors toward chemotherapies as a means to either improve initial responses, or serve as a secondary treatment strategy for therapy-resistant disease. Recently, targeting epigenetic regulators has emerged as a viable method of sensitizing tumors to the effects of chemotherapies, many of which are cytotoxic. In this review, we summarize these strategies and propose a path for future progress.


Assuntos
Antineoplásicos/uso terapêutico , Metilação de DNA , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/imunologia , Animais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
17.
Oncotarget ; 8(38): 64344-64357, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28969075

RESUMO

Using syngeneic BALB/c mouse breast cancer models, we show that the chromatin remodeling subunit bromodomain PHD finger transcription factor (BPTF) suppresses natural killer (NK) cell antitumor activity in the tumor microenvironment (TME). In culture, BPTF suppresses direct natural cytotoxicity receptor (NCR) mediated NK cell cytolytic activity to mouse and human cancer cell lines, demonstrating conserved functions. Blocking mouse NCR1 in vivo rescues BPTF KD tumor weights, demonstrating its importance for the control of tumor growth. We discovered that BPTF occupies heparanase (Hpse) regulatory elements, activating its expression. Increased heparanase activity results in reduced cell surface abundance of the NCR co-ligands: heparan sulfate proteoglycans (HSPGs). Using gain and loss of function approaches we show that elevated heparanase levels suppress NK cell cytolytic activity to tumor cells in culture. These results suggest that BPTF activates heparanase expression, which in turn reduces cell surface HSPGs and NCR co-ligands, inhibiting NK cell activity. Furthermore, gene expression data from human breast cancer tumors shows that elevated BPTF expression correlates with reduced antitumor immune cell signatures, supporting conserved roles for BPTF in suppressing antitumor immunity. Conditional BPTF depletion in established mouse breast tumors enhances antitumor immunity, suggesting that inhibiting BPTF could provide a novel immunotherapy.

18.
Cancer Res ; 76(21): 6183-6192, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27651309

RESUMO

Genetic studies in fruit flies have implicated the chromatin remodeling complex nucleosome remodeling factor (NURF) in immunity, but it has yet to be studied in mammals. Here we show that its targeting in mice enhances antitumor immunity in two syngeneic models of cancer. NURF was disabled by silencing of bromodomain PHD-finger containing transcription factor (BPTF), the largest and essential subunit of NURF. We found that both CD8+ and CD4+ T cells were necessary for enhanced antitumor activity, with elevated numbers of activated CD8+ T cells observed in BPTF-deficient tumors. Enhanced cytolytic activity was observed for CD8+ T cells cocultured with BPTF-silenced cells. Similar effects were not produced with T-cell receptor transgenic CD8+ T cells, implicating the involvement of novel antigens. Accordingly, enhanced activity was observed for individual CD8+ T-cell clones from mice bearing BPTF-silenced tumors. Mechanistic investigations revealed that NURF directly regulated the expression of genes encoding immunoproteasome subunits Psmb8 and Psmb9 and the antigen transporter genes Tap1 and Tap2 The PSMB8 inhibitor ONX-0914 reversed the effects of BPTF ablation, consistent with a critical role for the immunoproteasome in improving tumor immunogenicity. Thus, NURF normally suppresses tumor antigenicity and its depletion improves antigen processing, CD8 T-cell cytotoxicity, and antitumor immunity, identifying NURF as a candidate therapeutic target to enhance antitumor immunity. Cancer Res; 76(21); 6183-92. ©2016 AACR.


Assuntos
Antígenos Nucleares/fisiologia , Neoplasias/imunologia , Proteínas do Tecido Nervoso/fisiologia , Linfócitos T/imunologia , Fatores de Transcrição/fisiologia , Animais , Apresentação de Antígeno , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Nucleossomos/fisiologia
19.
Mol Cell Biol ; 35(1): 224-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25348714

RESUMO

Gene expression frequently requires chromatin-remodeling complexes, and it is assumed that these complexes have common gene targets across cell types. Contrary to this belief, we show by genome-wide expression profiling that Bptf, an essential and unique subunit of the nucleosome-remodeling factor (NURF), predominantly regulates the expression of a unique set of genes between diverse cell types. Coincident with its functions in gene expression, we observed that Bptf is also important for regulating nucleosome occupancy at nucleosome-free regions (NFRs), many of which are located at sites occupied by the multivalent factors Ctcf and cohesin. NURF function at Ctcf binding sites could be direct, because Bptf occupies Ctcf binding sites in vivo and has physical interactions with CTCF and the cohesin subunit SA2. Assays of several Ctcf binding sites using reporter assays showed that their regulatory activity requires Bptf in two different cell types. Focused studies at H2-K1 showed that Bptf regulates the ability of Klf4 to bind near an upstream Ctcf site, possibly influencing gene expression. In combination, these studies demonstrate that gene expression as regulated by NURF occurs partly through physical and functional interactions with the ubiquitous and multivalent factors Ctcf and cohesin.


Assuntos
Antígenos Nucleares/metabolismo , Células-Tronco Embrionárias/citologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Histonas/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Knockout , Nucleossomos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica
20.
Adv Cancer Res ; 121: 183-233, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24889532

RESUMO

The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.


Assuntos
Trifosfato de Adenosina/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Terapia de Alvo Molecular , Complexos Multiproteicos/fisiologia , Neoplasias/terapia , Animais , Histonas/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Neoplasias/genética , Neoplasias/patologia , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA