RESUMO
Ovarian follicles undergo a series of dynamic changes following the ovulatory surge of luteinizing hormone including cumulus expansion, oocyte maturation, ovulation, and luteinization. Post-transcriptional gene regulatory events are critical for mediating LH follicular responses, and among all RNA isoforms, circular RNA (circRNA) is one of the most abundant forms present in cells, yet they remain the least studied. Functionally, circRNA can act as miRNA sponges, protein sponges/decoys, and regulators of transcription and translation. In the context of ovarian follicular development, the identity and roles of circRNA are relatively unknown. In the present study, high throughput RNA sequencing of granulosa cells immediately prior to and 4-h after the LH/hCG surge identified 42,381 circRNA originating from 7712 genes. A total of 54 circRNA were identified as differentially expressed between 0-h and 4-h time points (Fold Change ± 1.5, FDR ≤ 0.1), among them 42 circRNA were upregulated and 12 circRNA were downregulated. All differentially expressed circRNA between the 0-h and 4-h groups were subjected to circinteractome analysis and identified networks of circRNA-protein and circRNA-miRNA were further subjected to "micro-RNA target filter analysis" in Ingenuity Pathway Analyses, which resulted in the identification of miRNA targeted mRNAs. A comparison of these circRNA target mRNAs with LH-induced mRNAs identified Runx2, Egfr, Areg, Sult1el, Cyp19a1, Cyp11a1, and Hsd17b1 as targets of circKif2, circVcan, circMast4, and circMIIt10. These newly identified LH/hCG-induced circRNA, their target miRNA and protein networks provide new insights into the complex interactions associated with periovulatory follicular development.
Assuntos
Células da Granulosa , RNA Circular , Feminino , Animais , Camundongos , RNA Circular/genética , Folículo Ovariano , Enzima de Clivagem da Cadeia Lateral do Colesterol , Citocromo P-450 CYP1A1RESUMO
Many cell types, including cancer cells, release tissue factor (TF)-exposing extracellular vesicles (EVs). It is unknown whether MSC-EVs pose a thromboembolism risk due to TF expression. Knowing that MSCs express TF and are procoagulant, we hypothesize that MSC-EVs also might. Here, we examined the expression of TF and the procoagulant activity of MSC-EVs and the impact of EV isolation methods and cell culture expansion on EV yield, characterization, and potential risk using a design of experiments methodology. MSC-EVs were found to express TF and have procoagulant activity. Thus, when MSC-derived EVs are employed as a therapeutic agent, one might consider TF, procoagulant activity, and thromboembolism risk and take steps to prevent them.
Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Tromboembolia , Humanos , Cordão Umbilical , Tromboplastina/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Tromboembolia/metabolismoRESUMO
Oocytes from many invertebrate and vertebrate species exhibit unique endoplasmic reticulum (ER) specializations (cortical ER clusters), which are thought to be essential for egg activation. In examination of cortical ER clusters, we observed that they were tethered to previously unreported fenestrae within the cortical actin layer. Furthermore, studies demonstrated that sperm preferentially bind to the plasma membrane overlying the fenestrae, establishing close proximity to underlying ER clusters. Moreover, following sperm-oocyte fusion, cortical ER clusters undergo a previously unrecognized global change in volume and shape that persists through sperm incorporation, before dispersing at the pronuclear stage. These changes did not occur in oocytes from females mated with Izumo1 -/- males. In addition to these global changes, highly localized ER modifications were noted at the sperm binding site as cortical ER clusters surround the sperm head during incorporation, then form a diffuse cloud surrounding the decondensing sperm nucleus. This study provides the first evidence that cortical ER clusters interact with the fertilizing sperm, indirectly through a previous unknown lattice work of actin fenestrae, and then directly during sperm incorporation. These observations raise the possibility that oocyte ER cluster-sperm interactions provide a competitive advantage to the oocyte, which may not occur during assisted reproductive technologies such as intracytoplasmic sperm injection.
Assuntos
Retículo Endoplasmático , Oócitos , Interações Espermatozoide-Óvulo , Animais , Feminino , Masculino , Camundongos , Actinas/metabolismo , Retículo Endoplasmático/ultraestrutura , Oócitos/ultraestrutura , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologiaRESUMO
EVs can be isolated from a conditioned medium derived from mesenchymal stromal cells (MSCs), yet the effect of the pre-processing storage condition of the cell culture-conditioned medium prior to EV isolation is not well-understood. Since MSCs are already in clinical trials, the GMP-grade of the medium which is derived from their manufacturing might have the utility for preclinical testing, and perhaps, for clinical translation, so the impact of pre-processing storage condition on EV isolation is a barrier for utilization of this MSC manufacturing by-product. To address this problem, the effects of the pre-processing storage conditions on EV isolation, characterization, and function were assessed using a conditioned medium (CM) derived from human umbilical cord-derived MSCs (HUC-MSCs). Hypothesis: The comparison of three different pre-processing storage conditions of CM immediately processed for EV isolation would reveal differences in EVs, and thus, suggest an optimal pre-processing storage condition. The results showed that EVs derived from a CM stored at room temperature, 4 °C, -20 °C, and -80 °C for at least one week were not grossly different from EVs isolated from the CM immediately after collection. EVs derived from an in pre-processing -80 °C storage condition had a significantly reduced polydispersity index, and significantly enhanced dot blot staining, but their zeta potential, hydrodynamic size, morphology and size in transmission electron microscopy were not significantly different from EVs derived from the CM immediately processed for isolation. There was no impact of pre-processing storage condition on the proliferation of sarcoma cell lines exposed to EVs. These data suggest that the CM produced during GMP-manufacturing of MSCs for clinical applications might be stored at -80 °C prior to EV isolation, and this may enable production scale-up, and thus, and enable preclinical and clinical testing, and EV lot qualification.
Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Cordão UmbilicalRESUMO
Adenosine deaminases acting on RNA-(ADAR) comprise one family of RNA editing enzymes that specifically catalyze adenosine to inosine (A-to-I) editing. A granulosa cell (GC) specific Adar depleted mouse model [Adar flox/flox:Cyp19a1-Cre/+ (gcAdarKO)] was used to evaluate the role of ADAR1 during the periovulatory period. Loss of Adar in GCs led to failure to ovulate at 16 h post-hCG, delayed oocyte germinal vesicle breakdown and severe infertility. RNAseq analysis of GC collected from gcAdarKO and littermate control mice at 0 and 4 h post-hCG following a super-ovulatory dose of eCG (48 h), revealed minimal differences after eCG treatment alone (0 h), consistent with normal folliculogenesis observed histologically and uterine estrogenic responses. In contrast, 300 differential expressed genes (DEGs; >1.5-fold change and FDRP < 0.1) were altered at 4 h post-hCG. Ingenuity pathway analysis identified many downstream targets of estrogen and progesterone pathways, while multiple genes involved in inflammatory responses were upregulated in the gcAdarKO GCs. Temporal expression analysis of GCs at 0, 4, 8, and 12 h post-hCG of Ifi44, Ifit1, Ifit3b, and Oas1g and Ovgp1 confirmed upregulation of these inflammatory and interferon genes and downregulation of Ovgp1 a glycoprotein involved in oocyte zona pellucida stability. Thus, loss of ADAR1 in GCs leads to increased expression of inflammatory and interferon response genes which are temporally linked to ovulation failure, alterations in oocyte developmental progression and infertility.
Assuntos
Infertilidade , Ovulação , Feminino , Animais , Camundongos , Ovulação/genética , Células da Granulosa , Interferons , Infertilidade/genética , Oócitos , AdenosinaRESUMO
Outer space is an extremely hostile environment for human life, with ionizing radiation from galactic cosmic rays and microgravity posing the most significant hazards to the health of astronauts. Spaceflight has also been shown to have an impact on established cancer hallmarks, possibly increasing carcinogenic risk. Terrestrially, women have a higher incidence of radiation-induced cancers, largely driven by lung, thyroid, breast, and ovarian cancers, and therefore, historically, they have been permitted to spend significantly less time in space than men. In the present review, we focus on the effects of microgravity and radiation on the female reproductive system, particularly gynecological cancer. The aim is to provide a summary of the research that has been carried out related to the risk of gynecological cancer, highlighting what further studies are needed to pave the way for safer exploration class missions, as well as postflight screening and management of women astronauts following long-duration spaceflight.
Assuntos
Ginecologia , Neoplasias Induzidas por Radiação , Voo Espacial , Ausência de Peso , Astronautas , Feminino , Humanos , Masculino , Ausência de Peso/efeitos adversosRESUMO
Multiple genome-wide association studies (GWAS) have linked Forkhead Box F1 (FOXF1) to Barrett's esophagus (BE). Understanding whether FOXF1 is involved in initiation of Barrett's metaplasia could allow FOXF1 to be used for risk stratification and for therapy. Two-dimensional cell cultures and three-dimensional organoid cultures and well-annotated human biopsies were used to determine the role of FOXF1 in BE pathogenesis. Multiple established esophageal squamous and BE cell lines were tested in gain- and loss-of-function studies. Initiation of a BE-like metaplastic change was evaluated by measuring characteristic cytokeratins and global gene expression profiling and by culturing organoids. Epithelial-mesenchymal transition (EMT) was evaluated by immunostaining for E-cadherin, vimentin and Snail, and by cell motility assay. Columnar esophageal epithelium of BE patients exhibited higher expression of FOXF1 compared to normal squamous esophageal epithelium of GERD patients (P < 0.001). Acidic bile salts induced nuclear FOXF1 in esophageal squamous cells. FOXF1 overexpression in normal esophageal squamous cells: (a) increased columnar cytokeratins and decreased squamous cytokeratins, (b) converted squamous organoids to glandular organoids, and (c) switched global gene profiles to resemble that of human BE epithelium (P = 2.1685e - 06 for upregulated genes and P = 8.3378e - 09 for downregulated genes). FOXF1 inhibition in BE cell lines led to loss of BE differentiation markers, CK7, and mucin 2. Also, FOXF1 induced EMT and promoted cell motility in normal esophageal squamous epithelial cells. FOXF1-induced genes mapped to pathways such as Cancer, Cellular Assembly and Organization, DNA Replication, Recombination, and Repair. In conclusion, FOXF1 promotes a BE-like columnar phenotype and cell motility in esophageal squamous epithelial cells, which may have a critical role in BE development. FOXF1 should be studied further as a biomarker for BE and as a target for BE treatment.
Assuntos
Esôfago de Barrett/etiologia , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead/metabolismo , Idoso , Esôfago de Barrett/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Esôfago/citologia , Esôfago/metabolismo , Humanos , Pessoa de Meia-IdadeRESUMO
Catecholamine neurons of the locus coeruleus (LC) in the dorsal pontine tegmentum innervate the entire neuroaxis, with signaling actions implicated in the regulation of attention, arousal, sleep-wake cycle, learning, memory, anxiety, pain, mood, and brain metabolism. The co-release of norepinephrine (NE) and dopamine (DA) from LC terminals in the hippocampus plays a role in all stages of hippocampal-memory processing. This catecholaminergic regulation modulates the encoding, consolidation, retrieval, and reversal of hippocampus-based memory. LC neurons in awake animals have two distinct firing modes: tonic firing (explorative) and phasic firing (exploitative). These two firing modes exert different modulatory effects on post-synaptic dendritic spines. In the hippocampus, the firing modes regulate long-term potentiation (LTP) and long-term depression, which differentially regulate the mRNA expression and transcription of plasticity-related proteins (PRPs). These proteins aid in structural alterations of dendritic spines, that is, structural long-term potentiation (sLTP), via expansion and structural long-term depression (sLTD) via contraction of post-synaptic dendritic spines. Given the LC's role in all phases of memory processing, the degeneration of 50% of the LC neuron population occurring in Alzheimer's disease (AD) is a clinically relevant aspect of disease pathology. The loss of catecholaminergic regulation contributes to dysfunction in memory processes along with impaired functions associated with attention and task completion. The multifaceted role of the LC in memory and general task performance and the close correlation of LC degeneration with neurodegenerative disease progression together implicate it as a target for new clinical assessment tools.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Locus Cerúleo , Potenciação de Longa Duração , MemóriaRESUMO
BACKGROUND: Opportunistic salpingectomy at the time of hysterectomy or as an alternative to bilateral tubal ligation may reduce the incidence of ovarian cancer, because it has been demonstrated that most serous ovarian cancers begin in the fallopian tubes. However, salpingectomy at the time of sterilization is not always financially covered by third-party payers, and this represents a barrier to adoption. Routine salpingectomy has become more common but is not always practiced at the time of hysterectomy. OBJECTIVE: This study aimed to determine the impact of opportunistic salpingectomy as an alternative tubal ligation and routine salpingectomy at the time of hysterectomy on ovarian cancer mortality and overall cost. STUDY DESIGN: An 8-state Markov state transition model was constructed, including hysterectomy, tubal ligation, and ovarian cancer. Transition probabilities were informed by previously reported population data and include age-adjusted rates of elective sterilization and hysterectomy. This model was used to predict ovarian cancer incidence and the cost effectiveness of opportunistic salpingectomy. Testing of this model suggested that it accurately predicted overall life expectancy and closely predicted the rate of hysterectomy in the population. The model may underestimate the rate of tubal sterilization, making it conservative with respect to the benefits of salpingectomy. RESULTS: The recursive Markov model was run from ages 20 to 85 years in 1-year intervals with a half step correction and included age-adjusted rates of tubal ligation, hysterectomy (with and without oophorectomy), and ovarian cancer. The model predicts that opportunistic salpingectomy at the time of tubal ligation will reduce ovarian cancer mortality by 8.13%. Opportunistic salpingectomy at the time of hysterectomy will reduce ovarian cancer mortality by 6.34% for a combined decrease of 14.5%. Both strategies are cost effective when considering only the cost of the opportunistic salpingectomy. The excess cost of opportunistic salpingectomy at the time of tubal ligation was $433.91 with an incremental cost-effective ratio of $6401 per life-year and $5469 per quality-adjusted life year gained when adjusting for ovarian cancer with a utility of 0.64. The incremental cost-effective ratio for opportunistic salpingectomy during hysterectomy at a cost of $124.70 was $2006 per life-year and $1667 per quality-adjusted life year. When considering the impact of ovarian cancer prevention with respect to the cost of ovarian cancer treatment, opportunistic salpingectomy may produce a substantial healthcare savings. Utilizing a 3% discount rate, it is estimated that the total savings for universal salpingectomy could be as high as $445 million annually in the United States. A sensitivity analysis around the benefit of opportunistic salpingectomy suggests that this procedure will be cost effective even if salpingectomy provides only a modest reduction in the risk of ovarian cancer. CONCLUSION: It is estimated that universal opportunistic salpingectomy may prevent 1854 deaths per year from ovarian cancer and may reduce healthcare costs. Given these data, universal opportunistic salpingectomy should be considered at the time of tubal ligation and hysterectomy and covered by third-party payers.
Assuntos
Carcinoma Epitelial do Ovário/prevenção & controle , Cesárea/métodos , Custos de Cuidados de Saúde , Histerectomia/métodos , Neoplasias Ovarianas/prevenção & controle , Procedimentos Cirúrgicos Profiláticos/métodos , Salpingectomia/métodos , Esterilização Tubária/métodos , Adolescente , Adulto , Idoso , Carcinoma Epitelial do Ovário/economia , Carcinoma Epitelial do Ovário/mortalidade , Análise Custo-Benefício , Feminino , Humanos , Cobertura do Seguro/economia , Seguro Saúde/economia , Cadeias de Markov , Pessoa de Meia-Idade , Neoplasias Ovarianas/economia , Neoplasias Ovarianas/mortalidade , Procedimentos Cirúrgicos Profiláticos/economia , Anos de Vida Ajustados por Qualidade de Vida , Salpingectomia/economia , Adulto JovemRESUMO
Mammalian oocytes must degrade maternal transcripts through a process called translational mRNA decay, in which maternal mRNA undergoes translational activation, followed by deadenylation and mRNA decay. Once a transcript is translationally activated, it becomes deadenylated by the CCR4-NOT complex. Knockout of CCR4-NOT Transcription Complex Subunit 6 Like (Cnot6l), a deadenylase within the CCR4-NOT complex, results in mRNA decay defects during metaphase I (MI) entry. Knockout of B-cell translocation gene-4 (Btg4), an adaptor protein of the CCR4-NOT complex, results in mRNA decay defects following fertilization. Therefore, mechanisms controlling mRNA turnover have significant impacts on oocyte competence and early embryonic development. Post-transcriptional inosine RNA modifications can impact mRNA stability, possibly through a translation mechanism. Here, we assessed inosine RNA modifications in oocytes, eggs, and embryos from Cnot6l-/- and Btg4-/- mice, which display stabilization of mRNA and over-translation of the stabilized transcripts. If inosine modifications have a role in modulating RNA stability, we hypothesize that in these mutant backgrounds, we would observe changes or a disruption in inosine mRNA modifications. To test this, we used a computational approach to identify inosine RNA modifications in total and polysomal RNA-seq data during meiotic maturation (GV, MI, and MII stages). We observed pronounced depletion of inosine mRNA modifications in samples from Cnot6l-/-, but not in Btg4-/- mice. Additionally, analysis of ribosome-associated RNA revealed clearance of inosine modified mRNA. These observations suggest a novel mechanism of mRNA clearance during oocyte maturation, in which inosine-containing transcripts decay in an independent, but parallel mechanism to CCR4-NOT deadenylation.
Assuntos
Nucleotídeos de Inosina/genética , Nucleotídeos de Inosina/metabolismo , Oócitos/metabolismo , RNA/genética , Ribonucleases/genética , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Oogênese/genética , Fases de Leitura Aberta , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/deficiência , Ribossomos/metabolismoRESUMO
Changes in extracellular potassium ([K+ ]e ) modulate neuronal networks via changes in membrane potential, voltage-gated channel activity, and alteration to transmission at the synapse. Given the limited extracellular space in the central nervous system, potassium clearance is crucial. As activity-induced potassium transients are rapidly managed by astrocytic Kir4.1 and astrocyte-specific Na+ /K+ -ATPase, any neurotransmitter/neuromodulator that can regulate their function may have indirect influence on network activity. Neuromodulators differentially affect cortical/thalamic networks to align sensory processing with differing behavioral states. Given serotonin (5HT), norepinephrine (NE), and acetylcholine (ACh) differentially affect spike frequency adaptation and signal fidelity ("signal-to-noise") in somatosensory cortex, we hypothesize that [K+ ]e may be differentially regulated by the different neuromodulators to exert their individual effects on network function. This study aimed to compare effects of individually applied 5HT, NE, and ACh on regulating [K+ ]e in connection to effects on cortical-evoked response amplitude and adaptation in male mice. Using extracellular field and K+ ion-selective recordings of somatosensory stimulation, we found that differential effects of 5HT, NE, and ACh on [K+ ]e regulation mirrored differential effects on amplitude and adaptation. 5HT effects on transient K+ recovery, adaptation, and field post-synaptic potential amplitude were disrupted by barium (200 µM), whereas NE and ACh effects were disrupted by ouabain (1 µM) or iodoacetate (100 µM). Considering the impact [K+ ]e can have on many network functions; it seems highly efficient that neuromodulators regulate [K+ ]e to exert their many effects. This study provides functional significance for astrocyte-mediated buffering of [K+ ]e in neuromodulator-mediated shaping of cortical network activity.
Assuntos
Acetilcolina/farmacologia , Astrócitos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Norepinefrina/farmacologia , Potássio/metabolismo , Serotonina/farmacologia , Córtex Somatossensorial/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Glicólise/fisiologia , Masculino , Camundongos , Transdução de Sinais/efeitos dos fármacos , Córtex Somatossensorial/metabolismoRESUMO
Astrocytes are highly dynamic cells that modulate synaptic transmission within a temporal domain of seconds to minutes in physiological contexts such as Long-Term Potentiation (LTP) and Heterosynaptic Depression (HSD). Recent studies have revealed that astrocytes also modulate a faster form of synaptic activity (milliseconds to seconds) known as Transient Heterosynaptic Depression (tHSD). However, the mechanism underlying astrocytic modulation of tHSD is not fully understood. Are the traditional gliotransmitters ATP or glutamate released via hemichannels/vesicles or are other, yet, unexplored pathways involved? Using various approaches to manipulate astrocytes, including the Krebs cycle inhibitor fluoroacetate, connexin 43/30 double knockout mice (hemichannels), and inositol triphosphate type-2 receptor knockout mice, we confirmed early reports demonstrating that astrocytes are critical for tHSD. We also confirmed the importance of group II metabotropic glutamate receptors (mGluRs) in astrocytic modulation of tHSD using a group II agonist. Using dominant negative SNARE mice, which have disrupted glial vesicle function, we also found that vesicular release of gliotransmitters and activation of adenosine A1 receptors are not required for tHSD. As astrocytes can release lipids upon receptor stimulation, we asked if astrocyte-derived endocannabinoids are involved in tHSD. Interestingly, a cannabinoid receptor 1 (CB1R) antagonist blocked and an inhibitor of the endogenous endocannabinoid 2-arachidonyl glycerol (2-AG) degradation potentiates tHSD in hippocampal slices. Taken together, this study provides the first evidence for group II mGluR-mediated astrocytic endocannabinoids in transiently suppressing presynaptic neurotransmitter release associated with the phenomenon of tHSD.
Assuntos
Astrócitos/metabolismo , Endocanabinoides/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Endocanabinoides/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piperidinas/farmacologia , Pirazóis/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacosRESUMO
Mammalian oocytes and eggs are transcriptionally quiescent and depend on post-transcriptional mechanisms for proper maturation. Post-transcriptional mRNA modifications comprise an important regulatory mechanism that can alter protein and miRNA recognition sites, splicing, stability, secondary structure, and protein coding. We discovered that fully grown mouse germinal vesicle oocytes and metaphase II eggs display abundant inosine mRNA modifications compared to growing oocytes from postnatal day 12 oocytes. These inosines were enriched in mRNA protein coding regions (CDS) and specifically located at the third codon base, or wobble position. Inosines, observed at lower frequencies in CDS of somatic tissues, were similarly enriched at the codon wobble position. In oocytes and eggs, inosine modifications lead primarily to synonymous changes in mRNA transcripts. Inosines may ultimately affect maternal mRNA stability by changing codon usage, thereby altering translational efficiency and translationally coupled mRNA degradation. These important observations advance our understanding of post-transcriptional mechanisms contributing to mammalian oocyte maturation.
Assuntos
Inosina/genética , Oócitos/fisiologia , Óvulo/fisiologia , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Códon/genética , Feminino , Regulação da Expressão Gênica , Camundongos , Oogênese , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismoRESUMO
Autoimmune Regulator (AIRE) regulates central immune tolerance by inducing expression of tissue-restricted antigens in thymic medullary epithelial cells, thereby ensuring elimination of autoreactive T cells. Aire mutations in humans and targeted Aire deletion in mice result in multiorgan autoimmune disease, known in humans as autoimmune polyglandular syndrome type 1 (APS-1). APS-1 is characterized by the presence of adrenal insufficiency, chronic mucosal candidiasis, and/or hypoparathyroidism. Additionally, females often present with gonadal insufficiency and infertility. Aire-deficiency (KO) in mice results in oophoritis and age-dependent depletion of follicular reserves. Here, we found that while the majority of young 6-week-old Aire-KO females had normal follicular reserves, mating behavior, and ovulation rates, 50% of females experienced embryonic loss between gestation day (GD) 5.5 and 7.5 that could not be attributed to insufficient progesterone production or decidualization. The quality of GD0.5 embryos recovered from Aire KO mice was reduced, and when cultured in vitro, embryos displayed limited developmental capacity in comparison to those recovered from wild-type (WT) mice. Further, embryos flushed from Aire KO dams at GD3.5 were developmentally delayed in comparison to WT controls and had reduced trophoblastic outgrowth in vitro. We conclude that AIRE does not play a direct role in uterine decidualization. Rather, reduced fertility of Aire-deficient females is likely due to multiple factors, including oophoritis, delayed preimplantation development, and compromised implantation. These effects may be explained by autoimmune targeting of the ovary, embryo, or both. Alternatively, altered embryonic development could be due to a direct role for AIRE in early embryogenesis.
Assuntos
Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Fatores de Transcrição/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fatores de Transcrição/genética , Proteína AIRERESUMO
In the somatosensory cortex, inhibitory networks are involved in low frequency sensory input adaptation/habituation that can be observed as a paired-pulse depression when using a dual stimulus electrophysiological paradigm. Given that astrocytes have been shown to regulate inhibitory interneuron activity, we hypothesized that astrocytes are involved in cortical sensory adaptation/habituation and constitute effectors of the 5HT-mediated increase in frequency transmission. Using extracellular recordings of evoked excitatory postsynaptic potentials (eEPSPs) in layer II/III of somatosensory cortex, we used various pharmacological approaches to assess the recruitment of astrocyte signaling in paired-pulse depression and serotonin-mediated increase in the paired-pulse ratio (pulse 2/pulse 1). In the absence of neuromodulators or pharmacological agents, the first eEPSP is much larger in amplitude than the second due to the recruitment of long-lasting evoked GABAA-dependent inhibitory activity from the first stimulus. Disruption of glycolysis or mGluR5 signaling resulted in a very similar loss of paired-pulse depression in field recordings. Interestingly, paired-pulse depression was similarly sensitive to disruption by ATP P2Y and adenosine A2A receptor antagonists. In addition, we show that pharmacological disruption of paired-pulse depression by mGluR5, P2Y, and glycolysis inhibition precluded serotonin effects on frequency transmission (typically increased the paired-pulse ratio). These data highlight the possibility for astrocyte involvement in cortical inhibitory activity seen in this simple cortical network and that serotonin may act on astrocytes to exert some aspects of its modulatory influence.
Assuntos
Astrócitos/efeitos dos fármacos , Neurotransmissores/farmacologia , Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Estimulação Elétrica/métodos , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Transmissão Sináptica/fisiologiaRESUMO
North American incidence of Alzheimer's disease (AD) is expected to more than double over the coming generation. Although genetic factors surrounding the production and clearance of amyloid-ß and phosphorylated tau proteins are known to be responsible for a subset of early-onset AD cases, they do not explain the pathogenesis of the far more prevalent sporadic late-onset variant of the disease. It is thus likely that lifestyle and environmental factors contribute to neurodegenerative processes implicated in the pathogenesis of AD. Herein, we review evidence that (1) excess sucrose consumption induces AD-associated liver pathologies and brain insulin resistance, (2) chronic stress overdrives activity of locus coeruleus neurons, leading to loss of function (a common event in neurodegeneration), (3) high-sugar diets and stress promote the loss of neuroprotective sex hormones in men and women, and (4) Western dietary trends set the stage for a lithium-deficient state. We propose that these factors may intersect as part of a "perfect storm" to contribute to the widespread prevalence of neurodegeneration and AD. In addition, we put forth the argument that exercise and supplementation with trace lithium can counteract many of the deleterious consequences associated with excessive caloric intake and perpetual stress. We conclude that lifestyle and environmental factors likely contribute to AD pathogenesis and that simple lifestyle and dietary changes can help counteract their effects.
Assuntos
Doença de Alzheimer/etiologia , Dieta/efeitos adversos , Comportamento Sedentário , Estresse Psicológico/complicações , Doença de Alzheimer/patologia , Encéfalo/patologia , Humanos , Estresse Psicológico/patologiaRESUMO
OBJECTIVE: To understand the fate and regulation of hypoxic type II alveolar epithelial cells (AECs) after lung contusion (LC). BACKGROUND: LC due to thoracic trauma is a major risk factor for the development of acute respiratory distress syndrome. AECs have recently been implicated as a primary driver of inflammation in LC. The main pathological consequence of LC is hypoxia, and a key mediator of adaptation to hypoxia is hypoxia-inducible factor (HIF)-1. We have recently published that HIF-1α is a major driver of acute inflammation after LC through type II AEC. METHODS: LC was induced in wild-type mice (C57BL/6), luciferase-based hypoxia reporter mice (ODD-Luc), and HIF-1α conditional knockout mice. The degree of hypoxia was assessed using hypoxyprobe and in vivo imaging system. The fate of hypoxic AEC was evaluated by luciferase dual staining with caspases-3 and Ki-67, terminal deoxynucleotidyl transferase dUTP nick end labeling, and flow cytometry with ApoStat. NLRP-3 expression was determined by western blot. Laser capture microdissection was used to isolate AECs in vivo, and collected RNA was analyzed by Q-PCR for HIF-related pathways. RESULTS: Global hypoxia was present after LC, but hypoxic foci were not uniform. Hypoxic AECs preferentially undergo apoptosis. There were significant reductions in NLRP-3 in HIF-1α conditional knockout mice. The expression of proteins involved in HIF-related pathways and inflammasome activation were significantly increased in hypoxic AECs. CONCLUSIONS: These are the first in vivo data to identify, isolate, and characterize hypoxic AECs. HIF-1α regulation through hypoxic AECs is critical to the initiation of acute inflammation after LC.
Assuntos
Células Epiteliais Alveolares/metabolismo , Contusões/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/etiologia , Lesão Pulmonar/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Contusões/fisiopatologia , Citometria de Fluxo , Hipóxia/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
OBJECTIVES: To compare the outcomes after intraperitoneal (IP) chemotherapy in patients with and without pathogenic BRCA mutations. METHODS: Patients with high grade ovarian cancer who were treated with adjuvant IP chemotherapy in the initial setting between 2005 and 2016 were identified. Outcomes were compared between patients with pathogenic mutations in BRCA (BRCA+) and those who tested negative or were unknown (BRCA-). RESULTS: A total of 100 eligible patients were identified. The median follow-up was 47.0â¯months (range, 6.6-144.1â¯months). Of these 100 patients, 77 patients underwent BRCA testing; 25 patients (32%) were BRCA+ (23 germline, 2 somatic). No differences were noted between groups with respect to number of IP cycles, stage, or residual disease after surgery. The median progression-free survival (PFS) was longer in the BRCA+ group; median PFS was not reached in the BRCA+ group compared to 17.3â¯months in the BRCA- group (HRâ¯=â¯0.38; 95% CI 0.20-0.73, Pâ¯=â¯0.003). Median overall survival (OS) was longer in the BRCA+ group at 110.4â¯months versus 67.1â¯months (HRâ¯=â¯0.28, 95% CI 0.11-0.73, Pâ¯=â¯0.009). CONCLUSIONS: Pathogenic BRCA mutations are more common than expected in optimally resected ovarian cancer patients selected for IP therapy. IP therapy was associated with a dramatic improvement in PFS and OS in BRCA+ patients compared with BRCA- patients. This improvement is greater than has been reported for BRCA+ patients with IV chemotherapy. The magnitude of this benefit suggests that patients with pathogenic mutations in BRCA may benefit from IP therapy.
Assuntos
Quimioterapia Adjuvante/métodos , Genes BRCA1/fisiologia , Genes BRCA2/fisiologia , Neoplasias Ovarianas/genética , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/patologia , Resultado do TratamentoRESUMO
Omega-3 fatty acids are generally under-consumed in Western diets; a factor that may largely be attributed to low intake of oily fish. Although supplementation strategies offer one approach in terms of improving blood fatty acid levels, rates of compliance are generally low due to difficulties in swallowing capsules, or unfavorable aftertastes. Consequently, new approaches, including food-based strategies, may be an alternative approach to improving omega-3 status and the health of public sectors. This paper sets out to discuss and review how the use of novel food vehicle and delivery advancements may be used to improve omega-3 status, which may have wider benefits for public health and well-being.
Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Administração Cutânea , Animais , Disponibilidade Biológica , Cápsulas , Dieta , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Emulsões , Ácidos Graxos Ômega-3/farmacocinética , Óleos de Peixe/administração & dosagem , Peixes , Alimentos Fortificados , Promoção da Saúde/métodos , Humanos , Carne , Nanotecnologia/métodos , Alimentos Marinhos , Sementes , VerdurasRESUMO
OBJECTIVE: The aim of this study was to determine the utility of surgery in patients with gestational trophoblastic neoplasia (GTN). MATERIALS AND METHODS: We performed a retrospective institutional review board-approved analysis of all patients with GTN at a single institution from 1985 to 2015 and compared all patients who underwent surgery as definitive management for their disease to a matched cohort of those who did not. Kaplan-Meier curves were used to estimate progression-free survival (PFS) and overall survival (OS). RESULTS: Sixty-nine patients underwent a total of 94 surgeries as definitive treatment for GTN. Nineteen patients had multiple surgeries. Progression-free survival and OS were improved in patients with complete macroscopic surgical resection (n = 61) compared with patients with gross residual disease (n = 33) (median PFS 91.2 months vs 3.3 months, and median OS not reached at 108.8 months vs 66.3 months, respectively; P < 0.05). The nature of the surgery (emergent vs planned) and site of metastatic disease did not influence PFS or OS. Of the 61 patients with no visible residual disease, 17 received adjuvant chemotherapy and 44 did not; there were no observed differences in PFS or OS. Patients who underwent surgery as part of definitive treatment (n = 69 patients) were compared with patients with GTN over the same period who received chemotherapy alone (n = 33 patients). Median PFS was improved in the surgical group (5.9 vs 5.1 months, P < 0.01), but OS was not significantly different (P = 0.37). CONCLUSIONS: Complete resection results in improved outcomes in patients who undergo surgery for GTN, whether emergent or planned, independent of disease site, and should be considered as an important component of treatment in some situations.