RESUMO
Multivalent binding proteins, such as the yeast scaffold protein Sterile-5, coordinate the location of kinases by serving as platforms for the assembly of signaling units. Similarly, in mammalian cells the cyclic adenosine 3',5'-monophosphate-dependent protein kinase (PKA) and phosphatase 2B [calcineurin (CaN)] are complexed by an A kinase anchoring protein, AKAP79. Deletion analysis and binding studies demonstrate that a third enzyme, protein kinase C (PKC), binds AKAP79 at a site distinct from those bound by PKA or CaN. The subcellular distributions of PKC and AKAP79 were similar in neurons. Thus, AKAP79 appears to function as a scaffold protein for three multifunctional enzymes.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Transporte , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Quinase C/metabolismo , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Ancoragem à Quinase A , Sequência de Aminoácidos , Animais , Encéfalo/enzimologia , Calcineurina , Calmodulina/farmacologia , Bovinos , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/análise , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Humanos , Dados de Sequência Molecular , Neurônios/química , Fosforilação , Proteína Quinase C/análise , Proteína Quinase C/antagonistas & inibidores , Proteínas/análise , Proteínas/farmacologia , Proteínas Recombinantes , Transdução de Sinais , Sinapses/fisiologiaRESUMO
Specificity of protein kinases and phosphatases may be achieved through compartmentalization with preferred substrates. In neurons, adenosine 3', 5'-monophosphate (cAMP)-dependent protein kinase (PKA) is localized at postsynaptic densities by association of its regulatory subunit with an A kinase anchor protein, AKAP79. Interaction cloning experiments demonstrated that AKAP79 also binds protein phosphatase 2B, or calcineurin (CaN). A ternary complex of PKA, AKAP, and CaN was isolated from bovine brain, and colocalization of the kinase and the phosphatase was established in neurites of cultured hippocampal neurons. The putative CaN-binding domain of AKAP79 is similar to that of the immunophilin FKBP-12, and AKAP79 inhibited CaN phosphatase activity. These results suggest that both PKA and CaN are targeted to subcellular sites by association with a common anchor protein and thereby regulate the phosphorylation state of key neuronal substrates.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Química Encefálica , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas/metabolismo , Proteínas de Ancoragem à Quinase A , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calcineurina , Proteínas de Ligação a Calmodulina/análise , Proteínas de Ligação a Calmodulina/antagonistas & inibidores , Proteínas de Transporte/análise , Bovinos , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/análise , Hipocampo/química , Dados de Sequência Molecular , Neuritos/química , Fosfoproteínas Fosfatases/análise , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosforilação , Proteínas/farmacologia , Ratos , Proteínas Recombinantes/farmacologia , Tacrolimo/farmacologiaRESUMO
Regulation of N-methyl-D-aspartate (NMDA) receptor activity by kinases and phosphatases contributes to the modulation of synaptic transmission. Targeting of these enzymes near the substrate is proposed to enhance phosphorylation-dependent modulation. Yotiao, an NMDA receptor-associated protein, bound the type I protein phosphatase (PP1) and the adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) holoenzyme. Anchored PP1 was active, limiting channel activity, whereas PKA activation overcame constitutive PP1 activity and conferred rapid enhancement of NMDA receptor currents. Hence, yotiao is a scaffold protein that physically attaches PP1 and PKA to NMDA receptors to regulate channel activity.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Ancoragem à Quinase A , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Inibidores Enzimáticos/farmacologia , Holoenzimas/metabolismo , Humanos , Dados de Sequência Molecular , Ácido Okadáico/farmacologia , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/farmacologia , Fosforilação , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Tionucleotídeos/farmacologia , TransfecçãoRESUMO
Compartmentalization of glutamate receptors with the signaling enzymes that regulate their activity supports synaptic transmission. Two classes of binding proteins organize these complexes: the MAGUK proteins that cluster glutamate receptors and AKAPs that anchor kinases and phosphatases. In this report, we demonstrate that glutamate receptors and PKA are recruited into a macromolecular signaling complex through direct interaction between the MAGUK proteins, PSD-95 and SAP97, and AKAP79/150. The SH3 and GK regions of the MAGUKs mediate binding to the AKAP. Cell-based studies indicate that phosphorylation of AMPA receptors is enhanced by a SAP97-AKAP79 complex that directs PKA to GluR1 via a PDZ domain interaction. As AMPA receptor phosphorylation is implicated in regulating synaptic plasticity, these data suggest that a MAGUK-AKAP complex may be centrally involved.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Receptores de Glutamato/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Ligação Competitiva/fisiologia , Western Blotting , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Microscopia Confocal , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Testes de Precipitina , Ligação Proteica/fisiologia , Ratos , Receptores de AMPA/metabolismo , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/fisiologiaRESUMO
BACKGROUND: Subcellular targeting of protein kinases and phosphatases provides a mechanism for co-localizing these enzymes with their preferred substrates. A recently identified mammalian scaffold protein, AKAP79, controls the location of two broad-specificity kinases and a phosphatase. RESULTS: We have identified and characterized another mammalian scaffold protein which coordinates the location of protein kinase A and protein kinase C. We isolated a cDNA encoding a 250 kDa A-skinase anchoring protein (AKAP) called gravin, which was originally identified as a cytoplasmic antigen recognized by myasthenia gravis sera. Sequence homology to proteins that are known to bind protein kinase C suggests that gravin also binds this kinase. Studies of binding in vitro show that residues 1526-1780 of gravin bind the regulatory subunit (RII) of protein kinase A with high affinity, and residues 265-556 bind protein kinase C. Gravin expression in human erythroleukemia cells can be induced with phorbol ester, resulting in the detection of a 250 kDa RII- and PKC-binding protein. Immunolocalization experiments show that gravin is concentrated at the cell periphery and is enriched in filopodia. Gravin staining is coincident with an AKAP detected by an in situ RII-overlay assay, and a PKA-gravin complex can be isolated from human erythroleukemia cells. CONCLUSIONS: We present biochemical evidence that gravin forms part of a signaling scaffold, and propose that protein kinases A and C may participate in the coordination of signal transduction events in the filopodia of human erythroleukemia cells.
Assuntos
Autoantígenos/imunologia , Miastenia Gravis/imunologia , Proteínas/imunologia , Proteínas de Ancoragem à Quinase A , Proteínas de Ciclo Celular , Clonagem Molecular , Humanos , Leucemia Eritroblástica Aguda/imunologia , Dados de Sequência Molecular , Células Tumorais CultivadasRESUMO
Centrosomes orchestrate microtubule nucleation and spindle assembly during cell division [1,2] and have long been recognized as major anchoring sites for cAMP-dependent protein kinase (PKA) [3,4]. Subcellular compartmentalization of PKA is achieved through the association of the PKA holoenzyme with A-kinase anchoring proteins (AKAPs) [5,6]. AKAPs have been shown to contain a conserved helical motif, responsible for binding to the type II regulatory subunit (RII) of PKA, and a specific targeting motif unique to each anchoring protein that directs the kinase to specific intracellular locations. Here, we show that pericentrin, an integral component of the pericentriolar matrix of the centrosome that has been shown to regulate centrosome assembly and organization, directly interacts with PKA through a newly identified binding domain. We demonstrate that both RII and the catalytic subunit of PKA coimmunoprecipitate with pericentrin isolated from HEK-293 cell extracts and that PKA catalytic activity is enriched in pericentrin immunoprecipitates. The interaction of pericentrin with RII is mediated through a binding domain of 100 amino acids which does not exhibit the structural characteristics of similar regions on conventional AKAPs. Collectively, these results provide strong evidence that pericentrin is an AKAP in vivo.
Assuntos
Antígenos/metabolismo , Proteínas de Transporte/metabolismo , Centrossomo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sítios de Ligação , Proteína Quinase Tipo II Dependente de AMP Cíclico , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de ProteínaRESUMO
Impaired insulin secretion is a characteristic of non-insulin-dependent diabetes mellitus (NIDDM). One possible therapeutic agent for NIDDM is the insulinotropic hormone glucagon-like peptide 1 (GLP-1). GLP-1 stimulates insulin secretion through several mechanisms including activation of protein kinase A (PKA). We now demonstrate that the subcellular targeting of PKA through association with A-kinase-anchoring proteins (AKAPs) facilitates GLP-1-mediated insulin secretion. Disruption of PKA anchoring by the introduction of anchoring inhibitor peptides or expression of soluble AKAP fragments blocks GLP-1 action in primary islets and cAMP-responsive insulin secretion in clonal beta cells (RINm5F). Displacement of PKA also prevented cAMP-mediated elevation of intracellular calcium suggesting that localized PKA phosphorylation events augment calcium flux.
Assuntos
Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucagon/farmacologia , Insulina/metabolismo , Pâncreas/metabolismo , Fragmentos de Peptídeos/farmacologia , Precursores de Proteínas/farmacologia , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Secreção de Insulina , RatosRESUMO
The subcellular location of the type II cAMP-dependent protein kinase is dictated by the interaction of the regulatory subunit (RII) with A-kinase anchor proteins (AKAPs). Using an interaction cloning strategy with RII alpha as a probe, we have isolated cDNAs encoding a novel 761-amino acid protein (named AKAP 95) that contains both RII- and DNA-binding domains. Deletion analysis and peptide studies revealed that the RII-binding domain of AKAP 95 is located between residues 642 and 659 and includes a predicted amphipathic helix. Zinc overlay and DNA binding studies suggest that the DNA-binding domain is composed of two CC/HH-type zinc fingers between residues 464 and 486 and residues 553 and 576. The AKAP was detected in a nuclear matrix fraction, and immunofluorescence using purified anti-AKAP 95 antibodies revealed a distinct nuclear staining in a variety of cell types. Direct overlay of fluorescein isothiocyanate-labeled RII alpha onto fixed rat embryo fibroblasts showed that high-affinity binding sites for RII exist in the nucleus and that these sites are blocked by an anchoring inhibitor peptide. Furthermore, AKAP 95 was detected in preparations of RII that were purified from cellular extracts using cAMP-agarose. The results suggest that AKAP 95 could play a role in targeting type II cAMP-dependent protein kinase for cAMP-responsive nuclear events.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Proteínas de Ancoragem à Quinase A , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia em Gel , Clonagem Molecular , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico , Proteína Quinase Tipo II Dependente de AMP Cíclico , DNA Complementar , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Dados de Sequência Molecular , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Ligação Proteica , Ratos , Frações Subcelulares/metabolismo , Dedos de ZincoRESUMO
Differential localization of the type II cAMP-dependent protein kinase (PKA) is achieved by interaction of the regulatory subunit (RII) with A-kinase anchor proteins (AKAPs). Anchoring is a likely means to adapt PKA for regulation of cAMP-responsive events through colocalization of the kinase with preferred substrates. Using an interaction cloning strategy with an RII alpha protein probe, we have identified a 655-amino acid protein (named AKAP100). Recombinant AKAP100, expressed in Escherichia coli, binds RII alpha in a solid-phase overlay assay. The cellular and subcellular distribution of AKAP100 was analyzed by various methods. Northern blot analysis with the AKAP100 cDNA as a probe detected an 8-kilobase message in some human tissues including various brain regions; however, the message was predominately expressed in cardiac and skeletal muscle. Anti-AKAP100 antibodies confirmed expression in the rat cardiac and skeletal muscle cell lines, H9c2 and L6P, whereas immunohistochemical analysis revealed that AKAP100 was localized to the sarcoplasmic reticulum of both cell types. RII was also detected in these regions. AKAP100 was detected in preparations of RII purified from L6P cell extracts by cAMP-agarose affinity chromatography. Collectively, these results suggest that AKAP100 functions to maintain the type II PKA at the sarcoplasmic reticulum.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas/genética , Retículo Sarcoplasmático/metabolismo , Proteínas de Ancoragem à Quinase A , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico , Proteína Quinase Tipo II Dependente de AMP Cíclico , Dados de Sequência Molecular , Proteínas/análise , RNA Mensageiro/análise , RatosRESUMO
WAVE proteins are members of the Wiskott-Aldrich syndrome protein (WASP) family of scaffolding proteins that coordinate actin reorganization by coupling Rho-related small molecular weight GTPases to the mobilization of the Arp2/3 complex. We identified WAVE-1 in a screen for rat brain A kinase-anchoring proteins (AKAPs), which bind to the SH3 domain of the Abelson tyrosine kinase (Abl). Recombinant WAVE-1 interacts with cAMP-dependent protein kinase (PKA) and Abl kinases when expressed in HEK-293 cells, and both enzymes co-purify with endogenous WAVE from brain extracts. Mapping studies have defined binding sites for each kinase. Competition experiments suggest that the PKA-WAVE-1 interaction may be regulated by actin as the kinase binds to a site overlapping a verprolin homology region, which has been shown to interact with actin. Immunocytochemical analyses in Swiss 3T3 fibroblasts suggest that the WAVE-1 kinase scaffold is assembled dynamically as WAVE, PKA and Abl translocate to sites of actin reorganization in response to platelet-derived growth factor treatment. Thus, we propose a previously unrecognized function for WAVE-1 as an actin-associated scaffolding protein that recruits PKA and Abl.
Assuntos
Proteínas dos Microfilamentos/metabolismo , Síndrome de Wiskott-Aldrich/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Primers do DNA , Imuno-Histoquímica , Camundongos , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Proteínas Oncogênicas v-abl/metabolismo , Testes de Precipitina , Ligação Proteica , Isoformas de Proteínas/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Família de Proteínas da Síndrome de Wiskott-AldrichRESUMO
The A-kinase-anchoring protein AKAP79 co-ordinates the location of cAMP-dependent protein kinase, phosphatase 2B (PP2B/calcineurin) and protein kinase C (PKC) at postsynaptic sites in neurons. In this report we focus on the mechanism of interaction between AKAP79 and PKC. We show that neither lipid activators nor kinase activation are required for association with AKAP79. The anchoring protein binds and inhibits the conserved catalytic core of PKCbetaII. AKAP79 also associates with conventional, novel and atypical isoforms of PKC in vitro and in vivo, and immunofluorescence staining of rat hippocampal neurons demonstrates that the murine anchoring-protein homologue AKAP150 is co-distributed with PKCalpha/beta, PKCepsilon or PKCiota. Binding of the AKAP79(31-52) peptide, which inhibits kinase activity, exposes the pseudosubstrate domain of PKCbetaII, allowing endoproteinase Arg-C proteolysis in the absence of kinase activators. Reciprocal experiments have identified two arginine residues at positions 39 and 40 that are essential for AKAP79(31-52) peptide inhibition of PKCbetaII. Likewise, the same mutations in the full-length anchoring protein reduced inhibition of PKCbetaII. Thus AKAP79 associates with multiple PKC isoforms through a mechanism involving protein-protein interactions at the catalytic core where binding of the anchoring protein inhibits kinase activity through displacement of the pseudosubstrate.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Ancoragem à Quinase A , Sequência de Aminoácidos , Animais , Arginina/genética , Arginina/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Domínio Catalítico , Ativação Enzimática/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lipídeos/farmacologia , Camundongos , Dados de Sequência Molecular , Peso Molecular , Mutação/genética , Neurônios/enzimologia , Neurônios/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química , Proteína Quinase C/genética , Ratos , Serina Endopeptidases/metabolismoRESUMO
Spatiotemporal regulation of protein kinase A (PKA) activity involves the manipulation of compartmentalized cAMP pools. Now we demonstrate that the muscle-selective A-kinase anchoring protein, mAKAP, maintains a cAMP signaling module, including PKA and the rolipram-inhibited cAMP-specific phosphodiesterase (PDE4D3) in heart tissues. Functional analyses indicate that tonic PDE4D3 activity reduces the activity of the anchored PKA holoenzyme, whereas kinase activation stimulates mAKAP-associated phosphodiesterase activity. Disruption of PKA- mAKAP interaction prevents this enhancement of PDE4D3 activity, suggesting that the proximity of both enzymes in the mAKAP signaling complex forms a negative feedback loop to restore basal cAMP levels.
Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Animais , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Retroalimentação , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Modelos Biológicos , Miocárdio/citologia , Ligação Proteica , Ratos , Transdução de SinaisRESUMO
Compartmentalization of protein kinases with substrates is a mechanism that may promote specificity of intracellular phosphorylation events. We have cloned a low-molecular weight A-kinase Anchoring Protein, called AKAP18, which targets the cAMP-dependent protein kinase (PKA) to the plasma membrane, and permits functional coupling to the L-type calcium channel. Membrane anchoring is mediated by the first 10 amino acids of AKAP18, and involves residues Gly1, Cys4 and Cys5 which are lipid-modified through myristoylation and dual palmitoylation, respectively. Transient transfection of AKAP18 into HEK-293 cells expressing the cardiac L-type Ca2+ channel promoted a 34 9% increase in cAMP-responsive Ca2+ currents. In contrast, a targeting-deficient mutant of AKAP18 had no effect on Ca2+ currents in response to the application of a cAMP analog. Further studies demonstrate that AKAP18 facilitates GLP-1-mediated insulin secretion in a pancreatic beta cell line (RINm5F), suggesting that membrane anchoring of the kinase participates in physiologically relevant cAMP-responsive events that may involve ion channel activation.