Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 8(17): 8921-8929, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30271555

RESUMO

While the host immune system is often considered the most important physiological mechanism against parasites, precontact mechanisms determining exposure to parasites may also affect infection dynamics. For instance, chemical cues released by hosts can attract parasite transmission stages. We used the freshwater snail Lymnaea stagnalis and its trematode parasite Echinoparyphium aconiatum to examine the role of host chemical attractiveness, physiological condition, and immune function in determining its susceptibility to infection. We assessed host attractiveness through parasite chemo-orientation behavior; physiological condition through host body size, food consumption, and respiration rate; and immune function through two immune parameters (phenoloxidase-like and antibacterial activity of hemolymph) at an individual level. We found that, although snails showed high variation in chemical attractiveness to E. aconiatum cercariae, this did not determine their overall susceptibility to infection. This was because large body size increased attractiveness, but also increased metabolic activity that reduced overall susceptibility. High metabolic rate indicates fast physiological processes, including immune activity. The examined immune traits, however, showed no association with susceptibility to infection. Our results indicate that postcontact mechanisms were more likely to determine snail susceptibility to infection than variation in attractiveness to parasites. These may include localized immune responses in the target tissue of the parasite. The lack of a relationship between food consumption and attractiveness to parasites contradicts earlier findings that show food deprivation reducing snail attractiveness. This suggests that, although variation in resource level over space and time can alter infection dynamics, variation in chemical attractiveness may not contribute to parasite-induced fitness variation within populations when individuals experience similar environmental conditions.

2.
Evolution ; 71(2): 227-237, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27925174

RESUMO

Predicting the evolution of phenotypic traits requires an understanding of natural selection on them. Despite its indispensability in the fight against parasites, selection on host immune defense has remained understudied. Theory predicts immune traits to be under stabilizing selection due to associated trade-offs with other fitness-related traits. Empirical studies, however, report mainly positive directional selection. This discrepancy could be caused by low phenotypic variation in the examined individuals and/or variation in host resource level that confounds trade-offs in empirical studies. In a field experiment where we maintained Lymnaea stagnalis snails individually in cages in a lake, we investigated phenotypic selection on two immune defense traits, phenoloxidase (PO)-like activity and antibacterial activity, in hemolymph. We used a diverse laboratory population and manipulated snail resource level by limiting their food supply. For six weeks, we followed immune activity, growth, and two fitness components, survival and fecundity of snails. We found that PO-like activity and growth were under stabilizing selection, while antibacterial activity was under positive directional selection. Selection on immune traits was mainly driven by variation in survival. The form of selection on immune defense apparently depends on the particular trait, possibly due to its importance for countering the present parasite community.


Assuntos
Imunidade Inata , Lymnaea/genética , Lymnaea/imunologia , Seleção Genética , Animais , Antibacterianos/metabolismo , Fertilidade , Aptidão Genética , Hemolinfa/química , Longevidade , Lymnaea/enzimologia , Lymnaea/crescimento & desenvolvimento , Monofenol Mono-Oxigenase/metabolismo
3.
PLoS One ; 11(8): e0161584, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551822

RESUMO

Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals' genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals' genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance.


Assuntos
Cruzamento , Estudos de Associação Genética , Variação Genética , Característica Quantitativa Herdável , Caramujos/genética , Caramujos/imunologia , Animais , Ativação Enzimática , Feminino , Hemolinfa , Masculino , Repetições de Microssatélites/genética , Monofenol Mono-Oxigenase/metabolismo , Reprodução/genética , Comportamento Sexual Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA