Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(25): 5536-5553.e22, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029747

RESUMO

Mycobacterium tuberculosis (Mtb) causes 1.6 million deaths annually. Active tuberculosis correlates with a neutrophil-driven type I interferon (IFN) signature, but the cellular mechanisms underlying tuberculosis pathogenesis remain poorly understood. We found that interstitial macrophages (IMs) and plasmacytoid dendritic cells (pDCs) are dominant producers of type I IFN during Mtb infection in mice and non-human primates, and pDCs localize near human Mtb granulomas. Depletion of pDCs reduces Mtb burdens, implicating pDCs in tuberculosis pathogenesis. During IFN-driven disease, we observe abundant DNA-containing neutrophil extracellular traps (NETs) described to activate pDCs. Cell-type-specific disruption of the type I IFN receptor suggests that IFNs act on IMs to inhibit Mtb control. Single-cell RNA sequencing (scRNA-seq) indicates that type I IFN-responsive cells are defective in their response to IFNγ, a cytokine critical for Mtb control. We propose that pDC-derived type I IFNs act on IMs to permit bacterial replication, driving further neutrophil recruitment and active tuberculosis disease.


Assuntos
Interferon Tipo I , Tuberculose , Humanos , Camundongos , Animais , Macrófagos/microbiologia , Citocinas , Neutrófilos , Células Dendríticas
2.
J Virol ; 98(10): e0128824, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39264207

RESUMO

SARS-CoV-2 infects via the respiratory tract, but COVID-19 includes an array of non-respiratory symptoms, among them gastrointestinal (GI) manifestations such as vomiting and diarrhea. Here we investigated the GI pathology of SARS-CoV-2 infections in rhesus macaques and humans. Macaques experienced mild infection with USA-WA1/2020 and shed viral RNA in the respiratory tract and stool, including subgenomic RNA indicative of replication in the GI tract. Intestinal immune cell populations were disturbed, with significantly fewer proliferating (Ki67+) jejunal B cells in SARS-CoV-2-infected macaques than uninfected ones. Modest translocation of bacteria/bacterial antigen was observed across the colonic epithelium, with a corresponding significant increase in plasma soluble CD14 (sCD14) that may be induced by LPS. Human plasma demonstrated significant decreases in interleukin (IL)-6 and sCD14 upon recovery from COVID-19, suggesting resolution of inflammation and response to translocated bacteria. sCD14 significantly positively correlated with zonulin, an indicator of gut barrier integrity, and IL-6. These results demonstrate that GI perturbations such as microbial translocation can occur in even mild SARS-CoV-2 infections and may contribute to the COVID-19 inflammatory state.IMPORTANCEThis study investigates gastrointestinal (GI) barrier disruption in SARS-CoV-2 infections and how it may contribute to disease. We observed bacteria or bacterial products crossing from the colon interior (the lumen) to the lamina propria during SARS-CoV-2 infection in macaques. Bacteria/bacterial products are tolerated in the lumen but may induce immune responses if they translocate to the lamina propria. We also observed a significant increase in soluble CD14, which is associated with an immune response to bacterial products. In addition, we observed that humans recovering from COVID-19 experienced a significant decrease in soluble CD14, as well as the inflammatory marker interleukin (IL)-6. IL-6 and sCD14 correlated significantly across macaque and human samples. These findings suggest that SARS-CoV-2 infection results in GI barrier disruption that permits microbial translocation and a corresponding immune response. These findings could aid in developing interventions to improve COVID-19 patient outcomes.


Assuntos
Translocação Bacteriana , COVID-19 , Interleucina-6 , Receptores de Lipopolissacarídeos , Macaca mulatta , SARS-CoV-2 , Animais , COVID-19/imunologia , COVID-19/virologia , COVID-19/microbiologia , Humanos , SARS-CoV-2/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Interleucina-6/metabolismo , Masculino , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/virologia , Trato Gastrointestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Mucosa Intestinal/metabolismo , Feminino , Haptoglobinas/metabolismo , Linfócitos B/imunologia , Pessoa de Meia-Idade , Precursores de Proteínas
3.
PLoS Pathog ; 16(4): e1008456, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282850

RESUMO

Leishmania donovani causes visceral leishmaniasis (VL), which is typically fatal without treatment. There is substantial variation between individuals in rates of disease progression, response to treatment and incidence of post-treatment sequelae, specifically post-kala-azar dermal leishmaniasis (PKDL). Nevertheless, the majority of infected people are asymptomatic carriers. Hamsters and mice are commonly used as models of fatal and non-fatal VL, respectively. Host and parasite genetics are likely to be important factors, but in general the reasons for heterogeneous disease presentation in humans and animal models are poorly understood. Host microbiota has become established as a factor in cutaneous forms of leishmaniasis but this has not been studied in VL. We induced intestinal dysbiosis in mice and hamsters by long-term treatment with broad-spectrum antibiotics in their drinking water. There were no significant differences in disease presentation in dysbiotic mice. In contrast, dysbiotic hamsters infected with L. donovani had delayed onset and progression of weight loss. Half of control hamsters had a rapid progression phenotype compared with none of the ABX-treated animals and the nine-month survival rate was significantly improved compared to untreated controls (40% vs. 10%). Antibiotic-treated hamsters also had significantly less severe hepatosplenomegaly, which was accompanied by a distinct cytokine gene expression profile. The protective effect was not explained by differences in parasite loads or haematological profiles. We further found evidence that the gut-liver axis is a key aspect of fatal VL progression in hamsters, including intestinal parasitism, bacterial translocation to the liver, malakoplakia and iron sequestration, none of which occurred in non-progressing murine VL. Diverse bacterial genera were cultured from VL affected livers, of which Rodentibacter was specifically absent from ABX-treated hamsters, indicating this pathobiont may play a role in promoting disease progression. The results provide experimental support for antibiotic prophylaxis against secondary bacterial infections as an adjunct therapy in human VL patients.


Assuntos
Antibacterianos/administração & dosagem , Infecções Bacterianas/prevenção & controle , Coinfecção/prevenção & controle , Enteropatias Parasitárias/parasitologia , Leishmaniose Visceral/parasitologia , Animais , Antibioticoprofilaxia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Coinfecção/microbiologia , Cricetinae , Progressão da Doença , Feminino , Microbioma Gastrointestinal , Humanos , Leishmania donovani/fisiologia , Leishmaniose Visceral/complicações , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Simbiose
4.
Cell Rep ; 42(1): 112020, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36848230

RESUMO

Variations in the composition of the intestinal bacterial microbiome correlate with acquisition of some sexually transmitted pathogens. To experimentally assess the contribution of intestinal dysbiosis to rectal lentiviral acquisition, we induce dysbiosis in rhesus macaques (RMs) with the antibiotic vancomycin prior to repeated low-dose intrarectal challenge with simian immunodeficiency virus (SIV) SIVmac239X. Vancomycin administration reduces T helper 17 (TH17) and TH22 frequencies, increases expression of host bacterial sensors and antibacterial peptides, and increases numbers of transmitted-founder (T/F) variants detected upon SIV acquisition. We observe that SIV acquisition does not correlate with measures of dysbiosis but rather associates with perturbations in the host antimicrobial program. These findings establish a functional association between the intestinal microbiome and susceptibility to lentiviral acquisition across the rectal epithelial barrier.


Assuntos
Disbiose , Vírus da Imunodeficiência Símia , Animais , Macaca mulatta , Vancomicina , Antibacterianos
5.
Sci Rep ; 12(1): 7491, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523797

RESUMO

Defective gastrointestinal barrier function and, in turn, microbial translocation have been identified as significant contributors to persistent inflammation in antiretroviral (ARV)-treated people living with HIV. Metabolic supplementation of short-chain fatty acids (SCFAs), generally produced by the commensal microbiome, may improve these outcomes. Butyrate is a SCFA that is essential for the development and maintenance of intestinal immunity and has a known role in supporting epithelial integrity. Herein we assessed whether supplementation with the dietary supplement sodium butyrate would improve immune reconstitution and reduce inflammation in ARV-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques. We demonstrate that butyrate supplementation does not significantly improve immune reconstitution, with no differences observed in systemic CD4+ T-cell frequencies, T-cell functionality or immune activation, microbial translocation, or transcriptional regulation. Our findings demonstrate that oral administration of sodium butyrate is insufficient to reduce persistent inflammation and microbial translocation in ARV-treated, SIV-infected macaques, suggesting that this therapeutic may not reduce co-morbidities and co-mortalities in treated people living with HIV.


Assuntos
Infecções por HIV , Reconstituição Imune , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Macaca mulatta
6.
Curr Protoc ; 1(4): e93, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33861500

RESUMO

Quantitative polymerase chain reactions (qPCRs) are commonly employed to enumerate genes of interest among particular biological samples. Insertion of PCR amplicons into plasmid DNA is a mainstay for creation of known quantities of target sequences to standardize qPCRs. Typically, one amplicon is inserted into one plasmid construct, and the plasmid is then amplified, purified, serially diluted, and quantified to be used to enumerate target sequences in unknown samples. As qPCR is often used to detect multiple amplicons simultaneously, individual qPCR standards are often desired to normalize one to another. Here we report a single plasmid containing eight amplicons, which can be used to quantify several different strains of simian immunodeficiency virus and human immunodeficiency virus, cell number equivalents for humans and nonhuman primates, T cell receptor excision circles, and bacterial 16S DNA. This FRugally Optimized DNA Octomer (FRODO) plasmid was created and standardized to quantify all eight PCR amplicons. © 2021 US Government. Basic Protocol 1: Total genomic DNA extraction from primary cells Basic Protocol 2: Quantitative PCR for viral, bacterial, and cell number equivalents Support Protocol: Purification, quantification, and storage of FRODO standard plasmid DNA.


Assuntos
Infecções por HIV , Vírus da Imunodeficiência Símia , Animais , DNA , Humanos , Primatas , Reação em Cadeia da Polimerase em Tempo Real , Vírus da Imunodeficiência Símia/genética
7.
Microbiol Spectr ; 9(3): e0107421, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756073

RESUMO

The vaginal microbiome composition in humans is categorized based upon the degree to which one of four species of Lactobacillus is dominant (Lactobacillus crispatus, community state type I [CST I], Lactobacillus gasseri, CST II, Lactobacillus iners, CST III, and Lactobacillus jensenii, CST V). Women with a vaginal microbiome not dominated by one of the four Lactobacillus species tend to have a more diverse microbiome, CST IV. CSTs I, II, III, and V are common in North America and Europe and are associated with lower incidences of some pathogens, such as human immunodeficiency virus (HIV), human papillomavirus (HPV), and Gardnerella vaginalis. As a result, therapeutic interventions to change the composition of the vaginal microbiomes are under development. However, Homo sapiens is the only mammalian species which has high frequencies of Lactobacillus-dominated vaginal microbiomes. Here, we treated female nonhuman primates (NHPs) with regimens of metronidazole and high levels of L. crispatus to determine how well these animals could be colonized with L. crispatus, how this influenced the immunological milieu, and how Lactobacillus treatment influenced or was influenced by the endogenous vaginal microbiome. We find that NHPs can transiently be colonized with L. crispatus, that beta diversity and not the number of doses of L. crispatus or pretreatment with metronidazole predicts subsequent L. crispatus colonization, that L. crispatus does not alter the local immunological milieu, and that the vaginal microbiome composition was resilient, normalizing by 4 weeks after our manipulations. Overall, this study suggests these animals are not amenable to long-term L. crispatus colonization. IMPORTANCE NHPs have proven to be invaluable animal models for the study of many human infectious diseases. The use of NHPs to study the effect of the microbiome on disease transmission and susceptibility is limited due to differences between the native microbiomes of humans and NHPs. In particular, Lactobacillus dominance of the vaginal microbiome is unique to humans and remains an important risk factor in reproductive health. By assessing the extent to which NHPs can be colonized with exogenously applied L. crispatus to resemble a human vaginal microbiome and examining the effects on the vaginal microenvironment, we highlight the utility of NHPs in analysis of vaginal microbiome manipulations in the context of human disease.


Assuntos
Chlorocebus aethiops/microbiologia , Lactobacillus crispatus/crescimento & desenvolvimento , Macaca mulatta/microbiologia , Microbiota/genética , Vagina/microbiologia , Animais , Antibacterianos/farmacologia , Feminino , Humanos , Inflamação/patologia , Lactobacillus crispatus/metabolismo , Menstruação/fisiologia , Metronidazol/farmacologia
8.
Mucosal Immunol ; 14(4): 937-948, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33731830

RESUMO

Microbial translocation contributes to persistent inflammation in both treated and untreated HIV infection. Although translocation is due in part to a disintegration of the intestinal epithelial barrier, there is a bias towards the translocation of Proteobacteria. We hypothesized that intestinal epithelial microvesicle cargo differs after HIV infection and contributes to biased translocation. We isolated gastrointestinal luminal microvesicles before and after progressive simian immunodeficiency virus (SIV) infection in rhesus macaques and measured miRNA and antimicrobial peptide content. We demonstrate that these microvesicles display decreased miR-28-5p, -484, -584-3p, and -584-5p, and let-7b-3p, as well as increased beta-defensin 1 after SIV infection. We further observed dose-dependent growth sensitivity of commensal Lactobacillus salivarius upon co-culture with isolated microvesicles. Infection-associated microvesicle differences were not mirrored in non-progressively SIV-infected sooty mangabeys. Our findings describe novel alterations of antimicrobial control after progressive SIV infection that influence the growth of translocating bacterial taxa. These studies may lead to the development of novel therapeutics for treating chronic HIV infection, microbial translocation, and inflammation.


Assuntos
Translocação Bacteriana , Disbiose/etiologia , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia , Animais , Biomarcadores , Progressão da Doença , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Macaca mulatta , MicroRNAs/genética , Síndrome de Imunodeficiência Adquirida dos Símios/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA