Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 11598, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665665

RESUMO

In the current study, we show that biofilm formation by various strains and species belonging to Bifidobacterium, a genus that includes gut commensals with reported health-promoting activities, is induced by high concentrations of bile (0.5% (w/v) or higher) and individual bile salts (20 mM or higher), rather than by acid or osmotic stress. The transcriptomic response of a bifidobacterial prototype Bifidobacterium breve UCC2003 to such high bile concentrations was investigated and a random transposon bank of B. breve UCC2003 was screened for mutants that affect biofilm formation in order to identify genes involved in this adaptive process. Eleven mutants affected in their ability to form a biofilm were identified, while biofilm formation capacity of an insertional mutation in luxS and an exopolysaccharide (EPS) negative B. breve UCC2003 was also studied. Reduced capacity to form biofilm also caused reduced viability when exposed to porcine bile. We propose that bifidobacterial biofilm formation is an adaptive response to high concentrations of bile in order to avoid bactericidal effects of high bile concentrations in the gastrointestinal environment. Biofilm formation appears to be a multi-factorial process involving EPS production, proteins and extracellular DNA release, representing a crucial strategy in response to bile stress in order to enhance fitness in the gut environment.


Assuntos
Bifidobacterium breve/genética , Ácidos e Sais Biliares/efeitos adversos , Biofilmes , Microbioma Gastrointestinal/genética , Animais , Proteínas de Bactérias/genética , Bifidobacterium breve/crescimento & desenvolvimento , Bifidobacterium breve/metabolismo , Bile/metabolismo , Liases de Carbono-Enxofre/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Perfilação da Expressão Gênica , Humanos , Mutagênese Insercional/genética , Mutação/genética , Pressão Osmótica/efeitos dos fármacos , Polissacarídeos Bacterianos/farmacologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
2.
Sci Rep ; 9(1): 17851, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780796

RESUMO

Bifidobacteria resident in the gastrointestinal tract (GIT) are subject to constantly changing environmental conditions, which require rapid adjustments in gene expression. Here, we show that two predicted LacI-type transcription factors (TFs), designated AraQ and MalR1, are involved in regulating the central, carbohydrate-associated metabolic pathway (the so-called phosphoketolase pathway or bifid shunt) of the gut commensal Bifidobacterium breve UCC2003. These TFs appear to not only control transcription of genes involved in the bifid shunt and each other, but also seem to commonly and directly affect transcription of other TF-encoding genes, as well as genes related to uptake and metabolism of various carbohydrates. This complex and interactive network of AraQ/MalR1-mediated gene regulation provides previously unknown insights into the governance of carbon metabolism in bifidobacteria.


Assuntos
Bifidobacterium breve/genética , Regulação Bacteriana da Expressão Gênica , Repressores Lac/metabolismo , Aldeído Liases/metabolismo , Bifidobacterium breve/metabolismo , Carbono/metabolismo , Repressores Lac/genética
3.
Front Microbiol ; 8: 964, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28620359

RESUMO

Bacteria evolved over millennia in the presence of the vital micronutrient iron. Iron is involved in numerous processes within the cell and is essential for nearly all living organisms. The importance of iron to the survival of bacteria is obvious from the large variety of mechanisms by which iron may be acquired from the environment. Random mutagenesis and global gene expression profiling led to the identification of a number of genes, which are essential for Bifidobacterium breve UCC2003 survival under iron-restrictive conditions. These genes encode, among others, Fe-S cluster-associated proteins, a possible ferric iron reductase, a number of cell wall-associated proteins, and various DNA replication and repair proteins. In addition, our study identified several presumed iron uptake systems which were shown to be essential for B. breve UCC2003 growth under conditions of either ferric and/or ferrous iron chelation. Of these, two gene clusters encoding putative iron-uptake systems, bfeUO and sifABCDE, were further characterised, indicating that sifABCDE is involved in ferrous iron transport, while the bfeUO-encoded transport system imports both ferrous and ferric iron. Transcription studies showed that bfeUO and sifABCDE constitute two separate transcriptional units that are induced upon dipyridyl-mediated iron limitation. In the anaerobic gastrointestinal environment ferrous iron is presumed to be of most relevance, though a mutation in the sifABCDE cluster does not affect B. breve UCC2003's ability to colonise the gut of a murine model.

4.
PLoS One ; 9(5): e98111, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24871429

RESUMO

In the present study we show that luxS of Bifidobacterium breve UCC2003 is involved in the production of the interspecies signaling molecule autoinducer-2 (AI-2), and that this gene is essential for gastrointestinal colonization of a murine host, while it is also involved in providing protection against Salmonella infection in Caenorhabditis elegans. We demonstrate that a B. breve luxS-insertion mutant is significantly more susceptible to iron chelators than the WT strain and that this sensitivity can be partially reverted in the presence of the AI-2 precursor DPD. Furthermore, we show that several genes of an iron starvation-induced gene cluster, which are downregulated in the luxS-insertion mutant and which encodes a presumed iron-uptake system, are transcriptionally upregulated under in vivo conditions. Mutation of two genes of this cluster in B. breve UCC2003 renders the derived mutant strains sensitive to iron chelators while deficient in their ability to confer gut pathogen protection to Salmonella-infected nematodes. Since a functional luxS gene is present in all tested members of the genus Bifidobacterium, we conclude that bifidobacteria operate a LuxS-mediated system for gut colonization and pathogen protection that is correlated with iron acquisition.


Assuntos
Proteínas de Bactérias/metabolismo , Bifidobacterium/metabolismo , Liases de Carbono-Enxofre/metabolismo , Trato Gastrointestinal/microbiologia , Homosserina/análogos & derivados , Lactonas/metabolismo , Probióticos/metabolismo , Animais , Bifidobacterium/genética , Caenorhabditis elegans , Perfilação da Expressão Gênica , Homosserina/metabolismo , Camundongos , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas
5.
PLoS One ; 8(5): e64699, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737995

RESUMO

Bifidobacteria are claimed to contribute positively to human health through a range of beneficial or probiotic activities, including amelioration of gastrointestinal and metabolic disorders, and therefore this particular group of gastrointestinal commensals has enjoyed increasing industrial and scientific attention in recent years. However, the molecular mechanisms underlying these probiotic mechanisms are still largely unknown, mainly due to the fact that molecular tools for bifidobacteria are rather poorly developed, with many strains lacking genetic accessibility. In this work, we describe the generation of transposon insertion mutants in two bifidobacterial strains, B. breve UCC2003 and B. breve NCFB2258. We also report the creation of the first transposon mutant library in a bifidobacterial strain, employing B. breve UCC2003 and a Tn5-based transposome strategy. The library was found to be composed of clones containing single transposon insertions which appear to be randomly distributed along the genome. The usefulness of the library to perform phenotypic screenings was confirmed through identification and analysis of mutants defective in D-galactose, D-lactose or pullulan utilization abilities.


Assuntos
Bifidobacterium/genética , Elementos de DNA Transponíveis/genética , Biblioteca Gênica , Mutagênese , Mutação , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Carboidratos/farmacologia , Carbono/farmacologia , Mutagênese Insercional/efeitos dos fármacos , Mutação/efeitos dos fármacos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA