RESUMO
Occupations including first responders and military require manual tasks; therefore changes in hand strength and dexterity could affect performance. We hypothesised that pinch strength, grip strength, and dexterity will change after unloaded and loaded exercise. Twenty-four male (25 ± 4.0 yrs; 86.3 ± 9.3 kg) and 10 female (25 ± 6.0 yrs; 62.1 ± 5.9 kg) participants completed 3 conditions for 5 minutes: (1) no exercise (2) run with no load at 3.0 m/s and (3) run wearing a 9.1 kg belt. Heart rate was different among conditions (p ≤ 0.05). Pinch strength was significantly different for the non-dominant hand after exercise (p = 0.005) for male participants, but not for the dominant hand. Grip strength was significantly different for the non-dominant hand between loaded and unloaded run (p = 0.035) for male participants. Pinch and grip strength did not change after exercise for female participants. Dexterity times were not different after exercise, but female participants were significantly faster (p ≤ 0.039) than male participants.
Grip strength, pinch strength, and dexterity are maintained in the first 15 minutes after running exercise for male and female participants. The dominant hand should be used if greater and more consistent strength and dexterity are needed for tasks that involve use of the hands after exercise.Abbreviations: ANOVA: Analysis of Variance; CV: Coefficient of Variation; Dom: Dominant hand; Non-Dom: Non-dominant hand.
RESUMO
Background Breast cancer (BC) is among the most common forms of cancer experienced by women. Up to 80% of BC survivors treated with chemotherapy experience chemotherapy-induced neuropathy (CIN), which degrades motor control, sensory function, and quality of life. CIN symptoms include numbness, tingling, and/or burning sensations in the extremities; deficits in neuromotor control; and increased fall risk. Physical activity (PA) and music-based medicine (MBM) are promising avenues to address sensorimotor symptoms. Therefore, we propose that we can combine the effects of music- and PA-based medicine through Neurologic Dance Training (NDT) through partnered Adapted Tango (NDT-Tango). We will assess the intervention effect of NDT-Tango v. home exercise (HEX) intervention on biomechanically-measured variables. We hypothesize that 8 weeks of NDT-Tango practice will improve the dynamics of posture and gait more than 8 weeks of HEX. Methods In a single-center, prospective, two-arm randomized controlled clinical trial, participants are randomly assigned (1:1 ratio) to the NDT-Tango experimental or the HEX active control intervention group. Primary endpoints are change from baseline to after intervention in posture and gait. Outcomes are collected at baseline, midpoint, post, 1mo follow up, and 6mo follow up. Secondary and tertiary outcomes include clinical and biomechanical tests of function and questionnaires used to compliment primary outcome measures. Linear mixed models will be used to model changes in postural, biomechanical, and PROs. The primary estimand will be the contrast representing the difference in mean change in outcome measure from baseline to week 8 between treatment groups. Discussion The scientific premise of this study is that NDT-Tango stands to achieve more gains than PA practice alone through combining PA with MBM and social engagement. Our findings may lead to a safe non-pharmacologic intervention that improves CIN-related deficits. Trial Registration This trial was first posted on 11/09/21 at ClinicalTrials.gov under the identifier NCT05114005.
RESUMO
BACKGROUND: Breast cancer (BC) is among the most common forms of cancer experienced by women. Up to 80% of BC survivors treated with chemotherapy experience chemotherapy-induced neuropathy (CIN), which degrades motor control, sensory function, and quality of life. CIN symptoms include numbness, tingling, and/or burning sensations in the extremities; deficits in neuromotor control; and increased fall risk. Physical activity (PA) and music-based medicine (MBM) are promising avenues to address sensorimotor symptoms. Therefore, we propose that we can combine the effects of music- and PA-based medicine through neurologic dance training (NDT) through partnered Adapted Tango (NDT-Tango). We will assess the intervention effect of NDT-Tango v. home exercise (HEX) intervention on biomechanically-measured variables. We hypothesize that 8 weeks of NDT-Tango practice will improve the dynamics of posture and gait more than 8 weeks of HEX. METHODS: In a single-center, prospective, two-arm randomized controlled clinical trial, participants are randomly assigned (1:1 ratio) to the NDT-Tango experimental or the HEX active control intervention group. Primary endpoints are change from baseline to after intervention in posture and gait. Outcomes are collected at baseline, midpoint, post, 1-month follow-up, and 6-month follow-up. Secondary and tertiary outcomes include clinical and biomechanical tests of function and questionnaires used to compliment primary outcome measures. Linear mixed models will be used to model changes in postural, biomechanical, and PROs. The primary estimand will be the contrast representing the difference in mean change in outcome measure from baseline to week 8 between treatment groups. DISCUSSION: The scientific premise of this study is that NDT-Tango stands to achieve more gains than PA practice alone through combining PA with MBM and social engagement. Our findings may lead to a safe non-pharmacologic intervention that improves CIN-related deficits. TRIAL REGISTRATION: This trial was first posted on 11/09/21 at ClinicalTrials.gov under the identifier NCT05114005.