Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34300618

RESUMO

The airflow velocity pattern generated by a widely used non-catching precipitation gauge (the Thies laser precipitation monitor or LPM) when immersed in a wind field is investigated using computational fluid dynamics (CFD). The simulation numerically solves the unsteady Reynolds-averaged Navier-Stokes (URANS) equations and the setup is validated against dedicated wind tunnel measurements. The adopted k-ω shear stress transport (SST) turbulence model closely reproduces the flow pattern generated by the complex, non-axisymmetric outer geometry of the instrument. The airflow pattern near the measuring area varies with the wind direction, the most intense recirculating flow and turbulence being observed when the wind blows from the back of the instrument. Quantitative parameters are used to discuss the magnitude of the airflow perturbations with respect to the ideal configuration where the instrument is transparent to the wind. The generated airflow pattern is expected to induce some bias in operational measurements, especially in strong wind conditions. The proposed numerical simulation framework provides a basis to develop correction curves for the wind-induced bias of non-catching gauges, as a function of the undisturbed wind speed and direction.

2.
Sensors (Basel) ; 21(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34577528

RESUMO

Dynamic calibration was performed in the laboratory on two catching-type drop counter rain gauges manufactured as high-sensitivity and fast response instruments by Ogawa Seiki Co. Ltd. (Japan) and the Chilbolton Rutherford Appleton Laboratory (UK). Adjustment procedures were developed to meet the recommendations of the World Meteorological Organization (WMO) for rainfall intensity measurements at the one-minute time resolution. A dynamic calibration curve was derived for each instrument to provide the drop volume variation as a function of the measured drop releasing frequency. The trueness of measurements was improved using a post-processing adjustment algorithm and made compatible with the WMO recommended maximum admissible error. The impact of dynamic calibration on the rainfall amount measured in the field at the annual and the event scale was calculated for instruments operating at two experimental sites. The rainfall climatology at the site is found to be crucial in determining the magnitude of the measurement bias, with a predominant overestimation at the low to intermediate rainfall intensity range.

3.
Water Sci Technol ; 68(6): 1419-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24056443

RESUMO

Since 2007, the University of Genoa has been carrying out a monitoring programme to investigate the hydrologic response of green roofs in the Mediterranean climate by installing a green roof experimental site. In order to assess the influence of green roofs on the storm water runoff quality, water chemistry data have been included in the monitoring programme since 2010, providing rainfall and outflow data. For atmospheric source, the bulk deposition is collected to evaluate the role of the overall atmospheric deposition in storm water runoff quality. For subsurface outflow, a maximum of 24 composite samples are taken on an event basis, thus aiming at a full characterization of the outflow hydrograph. Water chemistry data reveal that the pollutant loads associated with green roof outflow is low; in particular, solids and metal concentrations are lower than values generally observed in storm water runoff from traditional rooftops. The concentration values of chemical oxygen demand, total dissolved solids, Fe, Ca and K measured in the subsurface outflow are significantly higher than those observed in the bulk deposition (p < 0.05). With respect to the atmospheric deposition, the green roof behaviour as a sink/source of pollutants is investigated based on both concentration and mass.


Assuntos
Chuva , Movimentos da Água , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , Clima , Monitoramento Ambiental , Itália , Metais/análise , Material Particulado/análise , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA