Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 119(23): 6123-30, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25850680

RESUMO

The low-energy states and electronic spectrum in the near-infrared-visible region of [FeC6H6](+) are studied by theoretical approaches. An exhaustive exploration of the potential energy surface of [FeC6H6](+) is performed using the density functional theory method. The ground state is found to be a (4)A1 state. The structures of the lowest energy states ((4)A2 and (4)A1) are used to perform multireference wave function calculations by means of the multistate complete active space with perturbation at the second order method. Contrary to the density functional theory results ((4)A1 ground state), multireference perturbative calculations show that the (4)A2 state is the ground state. The vertical electronic spectrum is computed and compared with the astronomical diffuse interstellar bands, a set of near-infrared-visible bands detected on the extinction curve in our and other galaxies. Many transitions are found in this domain, corresponding to d → d, d → 4s, or d → π* excitations, but few are allowed and, if they are, their oscillation strengths are small. Even though some band positions could match some of the observed bands, the relative intensities do not fit, making the contribution of the [Fe-C6H6](+) complexes to the diffuse interstellar bands questionable. This work, however, lays the foundation for the studies of polycyclic aromatic hydrocarbons (PAHs) complexed to Fe cations that are more likely to possess d → π* and π → π* transitions in the diffuse interstellar bands domain. PAH ligands indeed possess a larger number of π and π* orbitals, respectively, higher and lower in energy than those of C6H6, which are expected to lead to lower energy d → π* and π → π* transitions in [FePAH](+) than in [FeC6H6](+) complexes.

2.
J Chem Phys ; 141(16): 164321, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25362313

RESUMO

The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H2 collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl-H2 collisional system in order to evaluate their respective accuracy. HCl-H2 hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the results suggest that these approaches work better for para-H2 than for ortho-H2 colliding partner. For the first time, we present HCl-H2 hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj1 = ΔF1 propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.

3.
J Chem Phys ; 140(6): 064316, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24527924

RESUMO

We present a new four-dimensional (4D) potential energy surface for the HCl-H2 van der Waals system. Both molecules were treated as rigid rotors. Potential energy surface was obtained from electronic structure calculations using a coupled cluster with single, double, and perturbative triple excitations method. The four atoms were described using the augmented correlation-consistent quadruple zeta basis set and bond functions were placed at mid-distance between the HCl and H2 centers of mass for a better description of the van der Waals interaction. The global minimum is characterized by the well depth of 213.38 cm(-1) corresponding to the T-shape structure with H2 molecule on the H side of the HCl molecule. The dissociation energies D0 are 34.7 cm(-1) and 42.3 cm(-1) for the complex with para- and ortho-H2, respectively. These theoretical results obtained using our new PES are in good agreement with experimental values [D. T. Anderson, M. Schuder, and D. J. Nesbitt, Chem. Phys. 239, 253 (1998)]. Close coupling calculations of the inelastic integral rotational cross sections of HCl in collisions with para-H2 and ortho-H2 were performed at low and intermediate collisional energies. Significant differences exist between para- and ortho-H2 results. The strongest collision-induced rotational HCl transitions are the transitions with Δj = 1 for collisions with both para-H2 and ortho-H2. Rotational relaxation of HCl in collision with para-H2 in the rotationally excited states j = 2 is dominated by near-resonant energy transfer.

4.
Phys Chem Chem Phys ; 15(25): 10062-70, 2013 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-23443908

RESUMO

We closely compare the accuracy of multidimensional potential energy surfaces (PESs) generated by the recently developed explicitly correlated coupled cluster (CCSD(T)-F12) methods in connection with the cc-pVXZ-F12 (X = D, T) and aug-cc-pVTZ basis sets and those deduced using the well-established orbital-based coupled cluster techniques employing correlation consistent atomic basis sets (aug-cc-pVXZ, X = T, Q, 5) and extrapolated to the complete basis set (CBS) limit. This work is performed on the benchmark rare gas-hydrogen halide interaction (HCl-He) system. These PESs are then incorporated into quantum close-coupling scattering dynamical calculations in order to check the impact of the accuracy of the PES on the scattering calculations. For this system, we deduced inelastic collisional data including (de-)excitation collisional and pressure broadening cross sections. Our work shows that the CCSD(T)-F12/aug-cc-pVTZ PES describes correctly the repulsive wall, the van der Waals minimum and long range internuclear distances whereas cc-pVXZ-F12 (X = D,T) basis sets are not diffuse enough for that purposes. Interestingly, the collision cross sections deduced from the CCSD(T)-F12/aug-cc-pVTZ PES are in excellent agreement with those obtained with CCSD(T)/CBS methodology. The position of the resonances and the general shape of these cross sections almost coincide. Since the cost of the electronic structure computations is reduced by several orders of magnitude when using CCSD(T)-F12/aug-cc-pVTZ compared to CCSD(T)/CBS methodology, this approach can be recommended as an alternative for generation of PESs of molecular clusters and for the interpretation of accurate scattering experiments as well as for a wide production of collisional data to be included in astrophysical and atmospherical models.

5.
Phys Chem Chem Phys ; 13(8): 3359-74, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21243160

RESUMO

In this article, classical Born-Oppenheimer molecular dynamics (MD) simulations in the microcanonical ensemble are performed on neutral and cationic polycyclic aromatic hydrocarbon (PAH) species, focusing on [FePAH](+)π-complexes. Their anharmonic mid-infrared (mid-IR) spectra in the classical approximation are derived. This approach allows us to describe the influence of the energy of a system on its IR spectrum in terms of band-shifts and broadenings. The MD simulations are performed on a potential energy surface (PES) described at the self-consistent-charge density functional tight-binding level of theory. The PES is benchmarked on DFT calculations, showing the validity of the approach for complexes of Fe(+) with PAHs larger than coronene (C(24)H(12)) that are of astrophysical interest. MD simulations at high temperature show the occurrence of the diffusion of the Fe cation on the surface of the PAH. It proceeds through the edge of the carbon skeleton which is the lowest energy pathway presenting barriers smaller than 1 eV. Although only qualitative information on the band broadenings can be obtained, we show that the dependence of the computed positions of the main bands of [C(24)H(12)](0/+)and [FeC(24)H(12)](+)π-complexes on temperature can be fit by linear laws. The spectral trends determined for [FeC(24)H(12)](+) are compared to those of N-substituted [C(23)NH(12)](+)and [SiC(24)H(12)](+)π-complexes of astrophysical interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA