Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37615902

RESUMO

Protists frequently host diverse bacterial symbionts, in particular those affiliated with the order Holosporales (Alphaproteobacteria). All characterised members of this bacterial lineage have been retrieved in obligate association with a wide range of eukaryotes, especially multiple protist lineages (e.g. amoebozoans, ciliates, cercozoans, euglenids, and nucleariids), as well as some metazoans (especially arthropods and related ecdysozoans). While the genus Paramecium and other ciliates have been deeply investigated for the presence of symbionts, known members of the family "Candidatus Paracaedibacteraceae" (Holosporales) are currently underrepresented in such hosts. Herein, we report the description of "Candidatus Intestinibacterium parameciiphilum" within the family "Candidatus Paracaedibacteraceae", inhabiting the cytoplasm of Paramecium biaurelia. This novel bacterium is almost twice as big as its relative "Candidatus Intestinibacterium nucleariae" from the opisthokont Nuclearia and does not present a surrounding halo. Based on phylogenetic analyses of 16S rRNA gene sequences, we identified six further potential species-level lineages within the genus. Based on the provenance of the respective samples, we investigated the environmental distribution of the representatives of "Candidatus Intestinibacterium" species. Obtained results are consistent with an obligate endosymbiotic lifestyle, with protists, in particular freshwater ones, as hosts. Thus, available data suggest that association with freshwater protists could be the ancestral condition for the members of the "Candidatus Intestinibacterium" genus.

2.
Environ Microbiol ; 23(3): 1684-1701, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470507

RESUMO

Members of the bacterial order Rickettsiales are obligatorily associated with a wide range of eukaryotic hosts. Their evolutionary trajectories, in particular concerning the origin of shared or differential traits among distant sub-lineages, are still poorly understood. Here, we characterized a novel Rickettsiales bacterium associated with the ciliate Paramecium tredecaurelia and phylogenetically related to the Rickettsia genus. Its genome encodes significant lineage-specific features, chiefly the mevalonate pathway gene repertoire, involved in isoprenoid precursor biosynthesis. Not only this pathway has never been described in Rickettsiales, it also is very rare among bacteria, though typical in eukaryotes, thus likely representing a horizontally acquired trait. The presence of these genes could enable an efficient exploitation of host-derived intermediates for isoprenoid synthesis. Moreover, we hypothesize the reversed reactions could have replaced canonical pathways for producing acetyl-CoA, essential for phospholipid biosynthesis. Additionally, we detected phylogenetically unrelated mevalonate pathway genes in metagenome-derived Rickettsiales sequences, likely indicating evolutionary convergent effects of independent horizontal gene transfer events. Accordingly, convergence, involving both gene acquisitions and losses, is highlighted as a relevant evolutionary phenomenon in Rickettsiales, possibly favoured by plasticity and comparable lifestyles, representing a potentially hidden origin of other more nuanced similarities among sub-lineages.


Assuntos
Paramecium , Filogenia , RNA Ribossômico 16S/genética , Rickettsiales/genética , Simbiose/genética
3.
Parasitology ; 147(9): 957-971, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32338239

RESUMO

A new microsporidian species, Globosporidium paramecii gen. nov., sp. nov., from Paramecium primaurelia is described on the basis of morphology, fine structure, and SSU rRNA gene sequence. This is the first case of microsporidiosis in Paramecium reported so far. All observed stages of the life cycle are monokaryotic. The parasites develop in the cytoplasm, at least some part of the population in endoplasmic reticulum and its derivates. Meronts divide by binary fission. Sporogonial plasmodium divides by rosette-like budding. Early sporoblasts demonstrate a well-developed exospore forming blister-like structures. Spores with distinctive spherical shape are dimorphic in size (3.7 ± 0.2 and 1.9 ± 0.2 µm). Both types of spores are characterized by a thin endospore, a short isofilar polar tube making one incomplete coil, a bipartite polaroplast, and a large posterior vacuole. Experimental infection was successful for 5 of 10 tested strains of the Paramecium aurelia species complex. All susceptible strains belong to closely related P. primaurelia and P. pentaurelia species. Phylogenetic analysis placed the new species in the Clade 4 of Microsporidia and revealed its close relationship to Euplotespora binucleata (a microsporidium from the ciliate Euplotes woodruffi), to Helmichia lacustris and Mrazekia macrocyclopis, microsporidia from aquatic invertebrates.


Assuntos
Microsporídios/isolamento & purificação , Paramecium/parasitologia , Microscopia Eletrônica de Transmissão , Microsporídios/classificação , Microsporídios/genética , Microsporídios/ultraestrutura , Filogenia
4.
Microb Ecol ; 78(2): 286-298, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30661111

RESUMO

Ciliates are the largest group of ubiquitous aquatic bacterivorous protists, and many species are easily cultivated. However, only few studies reported prokaryotic communities naturally associated with ciliate cells. Herein, we analyzed the microbiome composition of several strains of Paramecium (Ciliophora) originating from different locations and belonging to two morpho-species by high-throughput sequencing (HTS) of the 16S rRNA gene. Possible reasons of HTS results bias were addressed comparing DNA libraries obtained using different primers and different number of ciliate cells. Microbiomes associated with ciliates and their environments were always significantly different by prokaryotic taxonomic composition and bacterial richness. There were also pronounced differences between Paramecium strains. Interestingly, potentially pathogenic bacteria were revealed in Paramecium microbiomes.


Assuntos
Bactérias/isolamento & purificação , DNA Bacteriano/genética , Microbiota , Paramecium/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
5.
Curr Microbiol ; 72(6): 723-32, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26894821

RESUMO

Large-scale studies on obligate bacterial endosymbionts may frequently require preliminary purification and enrichment protocols, which are often elaborate to set up and to evaluate, especially if the host organism is a protist. The purpose of this study was to develop a real-time PCR-based strategy and employ it for assessing two of such enrichment protocols for Holospora caryophila, hosted by the ciliate Paramecium. Four SSU rRNA gene-targeted real-time PCR assays were designed, which allowed to compare the amount of H. caryophila to other organisms, namely the host, its food bacterium (Raoultella planticola), and free-living bacteria present in the culture medium. By the use of the real-time PCR assays in combination, it was possible to conclude that the "cell fractionation" protocol was quite successful in the enrichment of the symbiont, while the "Percoll gradient" protocol will need further refinements to be fully repeatable. The proposed approach has the potential to facilitate and encourage future studies on the yet underexplored field of bacterial endosymbionts of ciliates and other protists. It can also find valuable applications for experimental questions other than those tested, such as fast and precise assessment of symbiont abundance in natural populations and comparison among multiple coexisting symbionts.


Assuntos
Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , Cilióforos/microbiologia , Simbiose , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Cilióforos/fisiologia , DNA Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
Environ Microbiol Rep ; 14(1): 34-49, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34766443

RESUMO

Holosporales are an alphaproteobacterial lineage encompassing bacteria obligatorily associated with multiple diverse eukaryotes. For most representatives, little is known on the interactions with their hosts. In this study, we characterized a novel Holosporales symbiont of the ciliate Paramecium polycaryum. This bacterium inhabits the host cytoplasm, frequently forming quite large aggregates. Possibly due to such aggregates, host cells sometimes displayed lethal division defects. The symbiont was also able to experimentally stably infect another Paramecium polycaryum strain. The bacterium is phylogenetically related with symbionts of other ciliates and diplonemids, forming a putatively fast-evolving clade within the family Holosporaceae. Similarly to many close relatives, it presents a very small genome (<600 kbp), and, accordingly, a limited predicted metabolism, implying a heavy dependence on Paramecium, thanks also to some specialized membrane transporters. Characterized features, including the presence of specific secretion systems, are overall suggestive of a mild parasitic effect on the host. From an evolutionary perspective, a potential ancestral trend towards pronounced genome reduction and possibly linked to parasitism could be inferred, at least among fast-evolving Holosporaceae, with some lineage-specific traits. Interestingly, similar convergent features could be observed in other host-associated lineages, in particular Rickettsiales among Alphaproteobacteria.


Assuntos
Holosporaceae , Paramecium , Parasitos , Animais , Holosporaceae/genética , Paramecium/genética , Paramecium/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Simbiose
7.
Sci Rep ; 10(1): 20311, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219271

RESUMO

Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as "holobionts". We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont "Candidatus Pinguicoccus supinus" gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.


Assuntos
Euplotes/classificação , Simbiose/genética , Terminologia como Assunto , Verrucomicrobia/genética , Biologia Computacional , DNA Bacteriano/isolamento & purificação , Euplotes/genética , Euplotes/microbiologia , Euplotes/ultraestrutura , Genoma Bacteriano , Genoma Mitocondrial , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Filogenia , Verrucomicrobia/isolamento & purificação
8.
Sci Rep ; 9(1): 11356, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388025

RESUMO

Microbiomes of multicellular organisms are one of the hottest topics in microbiology and physiology, while only few studies addressed bacterial communities associated with protists. Protists are widespread in all environments and can be colonized by plethora of different bacteria, including also human pathogens. The aim of this study was to characterize the prokaryotic community associated with the sessile ciliate Stentor coeruleus. 16S rRNA gene metabarcoding was performed on single cells of S. coeruleus and on their environment, water from the sewage stream. Our results showed that the prokaryotic community composition differed significantly between Stentor cells and their environment. The core microbiome common for all ciliate specimens analyzed could be defined, and it was composed mainly by representatives of bacterial genera which include also potential human pathogens and commensals, such as Neisseria, Streptococcus, Capnocytophaga, Porphyromonas. Numerous 16S rRNA gene contigs belonged to endosymbiont "Candidatus Megaira polyxenophila". Our data suggest that each ciliate cell can be considered as an ecological microniche harboring diverse prokaryotic organisms. Possible benefits for persistence and transmission in nature for bacteria associated with protists are discussed. Our results support the hypothesis that ciliates attract potentially pathogenic bacteria and play the role of natural reservoirs for them.


Assuntos
Bactérias/isolamento & purificação , Cilióforos/microbiologia , Meio Ambiente , Microbiota , Esgotos/microbiologia , Código de Barras de DNA Taxonômico , RNA Ribossômico 16S
9.
Front Microbiol ; 10: 510, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001206

RESUMO

Rheinheimera sp. strain EpRS3, isolated from the rhizosphere of Echinacea purpurea, is already known for its ability to produce antibacterial compounds. By use of culture experiments, we verified and demonstrated its harmful effect against the ciliated protist Euplotes aediculatus (strain EASCc1), which by FISH experiments resulted to harbor in its cytoplasm the obligate bacterial endosymbiont Polynucleobacter necessarius (Betaproteobacteria) and the secondary endosymbiont "Candidatus Nebulobacter yamunensis" (Gammaproteobacteria). In culture experiments, the number of ciliates treated both with liquid broth bacteria-free (Supernatant treatment) and bacteria plus medium (Tq treatment), decreases with respect to control cells, with complete disappearance of ciliates within 6 h after Tq treatment. Results suggest that Rheinheimera sp. EpRS3 produces and releases in liquid culture one or more bioactive molecules affecting E. aediculatus survival. TEM analysis of control (not treated) ciliates allowed to morphologically characterize both kind of E. aediculatus endosymbionts. In treated ciliates, collected soon after the arising of cell suffering leading to death, TEM observations revealed some ultrastructural damages, indicating that P. necessarius endosymbionts went into degradation and vacuolization after both Supernatant and Tq treatments. Additionally, TEM investigation showed that when the ciliate culture was inoculated with Tq treatment, both a notable decrease of P. necessarius number and an increase of damaged and degraded mitochondria occur. FISH experiments performed on treated ciliates confirmed TEM results and, by means of the specific probe herein designed, disclosed the presence of Rheinheimera sp. EpRS3 both inside phagosomes and free in cytoplasm in ciliates after Tq treatment. This finding suggests a putative ability of Rheinheimera sp. EpRS3 to reintroduce itself in the environment avoiding ciliate digestion.

10.
Sci Rep ; 9(1): 1179, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718604

RESUMO

Members of the order Rickettsiales are often found in association with ciliated protists. An interesting case is the bacterial endosymbiont "Candidatus Megaira", which is phylogenetically closely related to the pathogen Rickettsia. "Candidatus Megaira" was first described as an intracellular bacterium in several ciliate species. Since then it has been found in association with diverse evolutionary distantly-related hosts, among them other unicellular eukaryotes, and also algae, and metazoa, such as cnidarians. We provide the characterization of several new strains of the type species "Candidatus Megaira polyxenophila", and the multidisciplinary description of a novel species, "Candidatus Megaira venefica", presenting peculiar features, which highlight the diversity and variability of these widespread bacterial endosymbionts. Screening of the 16S rRNA gene short amplicon database and phylogenetic analysis of 16S rRNA gene hypervariable regions revealed the presence of further hidden lineages, and provided hints on the possibility that these bacteria may be horizontally transmitted among aquatic protists and metazoa. The phylogenetic reconstruction supports the existence of at least five different separate species-level clades of "Candidatus Megaira", and we designed a set of specific probes allowing easy recognition of the four major clades of the genus.


Assuntos
Cilióforos/microbiologia , Variação Genética , Rickettsiaceae/classificação , Rickettsiaceae/isolamento & purificação , Simbiose , Organismos Aquáticos/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Rickettsiaceae/genética , Rickettsiaceae/fisiologia , Análise de Sequência de DNA
11.
ISME J ; 13(9): 2280-2294, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073215

RESUMO

Rickettsiales are a lineage of obligate intracellular Alphaproteobacteria, encompassing important human pathogens, manipulators of host reproduction, and mutualists. Here we report the discovery of a novel Rickettsiales bacterium associated with Paramecium, displaying a unique extracellular lifestyle, including the ability to replicate outside host cells. Genomic analyses show that the bacterium possesses a higher capability to synthesise amino acids, compared to all investigated Rickettsiales. Considering these observations, phylogenetic and phylogenomic reconstructions, and re-evaluating the different means of interaction of Rickettsiales bacteria with eukaryotic cells, we propose an alternative scenario for the evolution of intracellularity in Rickettsiales. According to our reconstruction, the Rickettsiales ancestor would have been an extracellular and metabolically versatile bacterium, while obligate intracellularity would have evolved later, in parallel and independently, in different sub-lineages. The proposed new scenario could impact on the open debate on the lifestyle of the last common ancestor of mitochondria within Alphaproteobacteria.


Assuntos
Evolução Biológica , Paramecium/microbiologia , Rickettsiales/genética , Alphaproteobacteria/classificação , Genômica , Mitocôndrias/microbiologia , Paramecium/genética , Paramecium/fisiologia , Filogenia , Rickettsiales/classificação , Rickettsiales/isolamento & purificação , Rickettsiales/fisiologia , Simbiose
12.
PLoS One ; 11(12): e0167928, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992463

RESUMO

Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of "green" ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name "Candidatus Holospora parva" for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis.


Assuntos
Chlorella/classificação , Água Doce/parasitologia , Holosporaceae/classificação , Paramecium/classificação , Chlorella/genética , Chlorella/isolamento & purificação , Citoplasma/química , DNA Ribossômico/análise , Holosporaceae/genética , Holosporaceae/isolamento & purificação , Macronúcleo/genética , Paramecium/genética , Paramecium/isolamento & purificação , Paramecium/microbiologia , Filogenia , RNA Ribossômico/análise , Simbiose
13.
Eur J Protistol ; 51(1): 98-108, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25635695

RESUMO

Previous studies on bacterial symbionts of ciliates have shown that some symbionts can be maintained relatively well under standard laboratory conditions whereas others are frequently lost, especially when the host is cultivated at a high division rate. In this study, the variation in infection level by the endosymbiont Holospora caryophila within its host population Paramecium octaurelia was investigated in response to three alimentary treatments and a subsequent starvation phase. The response of the ciliates was determined as a nearly exponential growth rate with different slopes in each treatment, proportional to the amount of food received. The initial infection level was higher than 90%. After 24 days of exponential host's growth, the prevalence remained stable at approximately 90% in all treatments, even after a subsequent starvation phase of 20 days. However, at intermediate time-points in both the feeding and the starvation phase, fluctuations in the presence of the intracellular bacteria were observed. These results show that H. caryophila is able to maintain its infection under the tested range of host growth conditions, also due to the possibility of an effective re-infection in case of partial loss.


Assuntos
Holosporaceae/fisiologia , Paramecium/microbiologia , Análise de Variância , Paramecium/crescimento & desenvolvimento , Simbiose , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA