Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33561443

RESUMO

The expression levels of CT10 regulator of kinase (Crk) and Crk-like (CrkL) are elevated in many human cancers, including glioblastoma (GBM), and are believed to contribute to poor prognosis. Although Crk and CrkL have been proposed as therapeutic targets in these tumors, the lack of a reliable, quantitative assay to measure Crk and CrkL activity has hindered development of inhibitors. Here, we knocked down Crk, CrkL, or both using siRNAs in a human GBM cell line, U-118MG, to determine the respective, quantitative contributions of Crk and CrkL to cellular phenotypes. The combined use of specific and potent Crk and CrkL siRNAs induced effective knockdown of CrkII, CrkI, and CrkL. Whereas Crk knockdown did not affect cell morphology, proliferation, adhesion, or invasion, CrkL knockdown caused shrinkage of cells and inhibition of cell proliferation, adhesion, and invasion. Crk/CrkL double knockdown resulted in more pronounced morphological alterations and more robust inhibition of proliferation, adhesion, and invasion. Furthermore, Crk/CrkL double knockdown completely blocked cell migration, and this effect was rescued by transient overexpression of CrkL but not of Crk. Quantification of protein levels indicated that CrkL is expressed more abundantly than CrkII and CrkI in U-118MG cells. These results demonstrate both the predominant role of CrkL and the essential overlapping functions of Crk and CrkL in U-118MG cells. Furthermore, our study indicates that migration of U-118MG cells depends entirely on Crk and CrkL. Thus, impedance-based, real-time measurement of tumor cell migration represents a robust assay for monitoring Crk and CrkL activities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Humanos , Técnicas In Vitro , Fenótipo , Proteínas Proto-Oncogênicas c-crk/genética
2.
J Vis Exp ; (196)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37427924

RESUMO

Tumor cells are highly motile and invasive and display altered gene expression patterns. Knowledge of how changes in gene expression regulate tumor cell migration and invasion is essential for understanding the mechanisms of tumor cell infiltration into neighboring healthy tissues and metastasis. Previously, it was demonstrated that gene knockdown followed by the impedance-based real-time measurement of tumor cell migration and invasion enables the identification of the genes required for tumor cell migration and invasion. Recently, the mRNA vaccines against SARS-CoV-2 have increased interest in using synthetic mRNA for therapeutic purposes. Here, the method using synthetic mRNA was revised to study the effect of gene overexpression on tumor cell migration and invasion. This study demonstrates that elevated gene expression with synthetic mRNA transfection followed by impedance-based real-time measurement may help identify the genes that stimulate tumor cell migration and invasion. This method paper provides important details on the procedures for examining the effect of altered gene expression on tumor cell migration and invasion.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Linhagem Celular Tumoral , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , COVID-19/genética , SARS-CoV-2/genética , Transfecção , Movimento Celular , Invasividade Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
3.
J Vis Exp ; (158)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32310229

RESUMO

Cancer arises due to uncontrolled proliferation of cells initiated by genetic instability, mutations, and environmental and other stress factors. These acquired abnormalities in complex, multilayered molecular signaling networks induce aberrant cell proliferation and survival, extracellular matrix degradation, and metastasis to distant organs. Approximately 90% of cancer-related deaths are estimated to be caused by the direct or indirect effects of metastatic dissemination. Therefore, it is important to establish a highly reliable, comprehensive system to characterize cancer cell behaviors upon genetic and environmental manipulations. Such a system can give a clear understanding of the molecular regulation of cancer metastasis and the opportunity for successful development of stratified, precise therapeutic strategies. Hence, accurate determination of cancer cell behaviors such as migration and invasion with gain or loss of function of gene(s) allows assessment of the aggressive nature of cancer cells. The real-time measurement system based on cell impedance enables researchers to continually acquire data during a whole experiment and instantly compare and quantify the results under various experimental conditions. Unlike conventional methods, this method does not require fixation, staining, and sample processing to analyze cells that migrate or invade. This method paper emphasizes detailed procedures for real-time determination of migration and invasion of glioblastoma cancer cells.


Assuntos
Movimento Celular , Técnicas Citológicas/métodos , Linhagem Celular Tumoral , Proliferação de Células , Impedância Elétrica , Glioblastoma/patologia , Humanos , Invasividade Neoplásica , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA