Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Ecol ; 41(4): 350-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25893789

RESUMO

Treatment of plants with exogenous salicylic acid (SA) improves resistance to many bacterial pathogens, but can suppress resistance to insect herbivores. While plants vary naturally in constitutive SA, whether such differences are predictive of resistance to insect herbivores has not been studied previously. We examined the possible role of this endogenous SA in structuring the interactions between the cabbage white butterfly, Pieris rapae, and ten hosts in the mustard family (Brassicaceae). Because P. rapae has multiple generations that utilize different hosts across the year, we included five spring-flowering mustards and five summer-flowering mustards that co-occur in ruderal habitats in upstate New York. Under common garden conditions, the spring flowering mustards (Capsella bursa-pastoris, Draba verna, Cardamine impatiens, Barbarea vulgaris, and Arabidopsis thaliana) were significantly more resistant to P. rapae, supporting 42 % less herbivory (P = 0.015) and 64 % lower relative growth rates (P = 0.007), relative to the summer flowering mustards (Sisymbrium altissimum, Brassica nigra, Sinapis arvense, Lepidium campestre, and Arabis canadensis). Leaf total constitutive SA explained significant variation in larval herbivory (R (2) = 75.3 %, P = 0.007) and relative growth rates (R (2) = 59.4 %, P = 0.043). The three species with the lowest levels of constitutive SA (Capsella bursa-pastoris, Draba verna, and Cardamine impatiens) were the most resistant to larvae. Barbarea vulgaris and Arabis canadensis were notable exceptions, exhibiting high SA concentrations and intermediate resistance to P. rapae. These results suggest a curvilinear relationship between leaf constitutive SA and the herbivory by P. rapae, and they provide some insight into the ecology and possible management of this economically important crop pest.


Assuntos
Brassicaceae/química , Borboletas/crescimento & desenvolvimento , Cadeia Alimentar , Herbivoria , Ácido Salicílico/metabolismo , Animais , Borboletas/química , Borboletas/fisiologia , Espécies Introduzidas , Larva/crescimento & desenvolvimento , Larva/fisiologia , New York , Oviposição , Folhas de Planta/química
2.
Mamm Genome ; 18(12): 852-60, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18060457

RESUMO

Recent work has identified a growing body of evidence that subtle changes in noncoding sequences can result in significant pathology. These mutations, which would have been called silent polymorphisms in the past, affect gene transcription and mRNA splicing and lead to drastic changes in gene expression. Previous work from our lab has characterized the murine flexed-tail (f) mutation, which encodes Smad5, a transcription factor that functions downstream of the receptors for bone morphogenetic proteins (BMPs). f/f mice are unable to rapidly respond to acute anemia. Our analysis of these mice led to the development of a new model for stress erythropoiesis, where BMP4 expression in the spleen leads to the Smad5-dependent expansion of a specialized population of stress erythroid progenitors during the recovery from acute anemia. f/f mutant mice exhibit a defect in Smad5 mRNA splicing in the spleen such that the majority of Smad5 transcripts are two misspliced mRNAs. One of these mRNAs encodes a truncated form of Smad5 that inhibits BMP4 signaling when overexpressed. Here we show that a mutation in a poly(T) element in intron 4 causes the splicing defect in f/f mutant mice. This subtle mutation (loss of 1 or 2 Ts in a 16-T element) results in defects in splicing throughout the Smad5 gene. Furthermore, we show that this mutation results in tissue-specific splicing defects, which may explain why f/f mice are viable when Smad5-/- mice are embryonic lethal.


Assuntos
Íntrons , Mutação , Splicing de RNA/genética , Proteína Smad5/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA , Reparo do DNA , Amplificação de Genes , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA