Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(14): e2321615121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530892

RESUMO

Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and O-methyltransferases (OMTs). However, the specific OMTs that catalyze the systematic O-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, CreOMT3, CreOMT4, and CreOMT5, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite O-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem CreOMT3, CreOMT4, and CreOMT5 may be duplicated from CreOMT6 and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-O-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the CreOMT4 promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.


Assuntos
Citrus , Citrus/química , Domesticação , Melhoramento Vegetal , Metilação , Metiltransferases/metabolismo
2.
Plant Cell ; 35(4): 1167-1185, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36530163

RESUMO

Carotenoids are natural pigments that influence the color of citrus fruit. The red-colored carotenoid ß-citraurin is responsible for the peel color in "Newhall" orange (Citrus sinensis). Although jasmonates are known to regulate the biosynthesis and accumulation of carotenoids, their effects on ß-citraurin biosynthesis in citrus fruit remain unclear. Here, we determined that treatment with methyl jasmonate (MeJA) significantly promotes fruit coloration and ß-citraurin production in "Newhall" orange. A MeJA treatment induced the expression of CsMYC2, which encodes a transcription factor that serves as a master regulator of jasmonate responses. CsMYC2 bound the promoter of the gene that encodes carotenoid cleavage dioxygenase 4b (CsCCD4b), the key gene for ß-citraurin biosynthesis, and the promoters of genes that encode phytoene synthase (CsPSY), lycopene ß-cyclase (CsLCYb), and ß-carotene hydroxylase (CsBCH) and induced their expression. In addition, CsMYC2 promoted CsMPK6 expression. Notably, we found that CsMPK6 interacted with CsMYC2 and that this interaction decreased the stability and DNA-binding activity of CsMYC2. Thus, we conclude that negative feedback regulation attenuates JA signaling during the jasmonate-induced coloration of citrus fruit. Together, our findings indicate that jasmonates induce ß-citraurin biosynthesis in citrus by activating a CsMPK6-CsMYC2 cascade, thereby affecting fruit coloration.


Assuntos
Citrus sinensis , Citrus , Carotenoides/metabolismo , Citrus/genética , Citrus/metabolismo , Citrus sinensis/genética , Citrus sinensis/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase
3.
PLoS Genet ; 19(6): e1010811, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339133

RESUMO

Conservation of crop wild relatives is critical for plant breeding and food security. The lack of clarity on the genetic factors that lead to endangered status or extinction create difficulties when attempting to develop concrete recommendations for conserving a citrus wild relative: the wild relatives of crops. Here, we evaluate the conservation of wild kumquat (Fortunella hindsii) using genomic, geographical, environmental, and phenotypic data, and forward simulations. Genome resequencing data from 73 accessions from the Fortunella genus were combined to investigate population structure, demography, inbreeding, introgression, and genetic load. Population structure was correlated with reproductive type (i.e., sexual and apomictic) and with a significant differentiation within the sexually reproducing population. The effective population size for one of the sexually reproducing subpopulations has recently declined to ~1,000, resulting in high levels of inbreeding. In particular, we found that 58% of the ecological niche overlapped between wild and cultivated populations and that there was extensive introgression into wild samples from cultivated populations. Interestingly, the introgression pattern and accumulation of genetic load may be influenced by the type of reproduction. In wild apomictic samples, the introgressed regions were primarily heterozygous, and genome-wide deleterious variants were hidden in the heterozygous state. In contrast, wild sexually reproducing samples carried a higher recessive deleterious burden. Furthermore, we also found that sexually reproducing samples were self-incompatible, which prevented the reduction of genetic diversity by selfing. Our population genomic analyses provide specific recommendations for distinct reproductive types and monitoring during conservation. This study highlights the genomic landscape of a wild relative of citrus and provides recommendations for the conservation of crop wild relatives.


Assuntos
Citrus , Citrus/genética , Melhoramento Vegetal , Genoma , Genômica , Produtos Agrícolas/genética , Variação Genética
4.
Plant J ; 117(3): 924-943, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37902994

RESUMO

Chromoplasts act as a metabolic sink for carotenoids, in which plastoglobules serve as versatile lipoprotein particles. PGs in chloroplasts have been characterized. However, the features of PGs from non-photosynthetic plastids are poorly understood. We found that the development of chromoplast plastoglobules (CPGs) in globular and crystalloid chromoplasts of citrus is associated with alterations in carotenoid storage. Using Nycodenz density gradient ultracentrifugation, an efficient protocol for isolating highly purified CPGs from sweet orange (Citrus sinensis) pulp was established. Forty-four proteins were defined as likely comprise the core proteome of CPGs using comparative proteomics analysis. Lipidome analysis of different chromoplast microcompartments revealed that the nonpolar microenvironment within CPGs was modified by 35 triacylglycerides, two sitosterol esters, and one stigmasterol ester. Manipulation of the CPG-localized gene CsELT1 (esterase/lipase/thioesterase) in citrus calli resulted in increased lipids and carotenoids, which is further evidence that the nonpolar microenvironment of CPGs contributes to carotenoid accumulation and storage in the chromoplasts. This multi-feature analysis of CPGs sheds new light on the role of chromoplasts in carotenoid metabolism, paving the way for manipulating carotenoid content in citrus fruit and other crops.


Assuntos
Citrus sinensis , Citrus , Citrus/genética , Citrus/metabolismo , Multiômica , Carotenoides/metabolismo , Plastídeos/metabolismo , Citrus sinensis/genética , Frutas/genética , Frutas/metabolismo
5.
Plant Physiol ; 194(3): 1722-1744, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38051979

RESUMO

Knocking out genes encoding proteins that downregulate the accumulation of pigments may lead to increases in crop quality and yield. PSEUDO-ETIOLATION IN LIGHT 1 (PEL1) downregulates the accumulation of carotenoids in carrot and chlorophyll in Arabidopsis and rice and may inhibit GOLDEN 2-LIKE (GLK) transcription factors. PEL1 belongs to a previously unstudied gene family found only in plants. We used CRISPR/Cas9 technology to knock out each member of the 4-member PEL gene family and both GLK genes in Arabidopsis. In pel mutants, chlorophyll levels were elevated in seedlings; after flowering, chloroplasts increased in size, and anthocyanin levels increased. Although the chlorophyll-deficient phenotype of glk1 glk2 was epistatic to pel1 pel2 pel3 pel4 in most of our experiments, glk1 glk2 was not epistatic to pel1 pel2 pel3 pel4 for the accumulation of anthocyanins in most of our experiments. The pel alleles attenuated growth, altered the accumulation of nutrients in seeds, disrupted an abscisic acid-inducible inhibition of seedling growth response that promotes drought tolerance, and affected the expression of genes associated with diverse biological functions, such as stress responses, cell wall metabolism hormone responses, signaling, growth, and the accumulation of phenylpropanoids and pigments. We found that PEL proteins specifically bind 6 transcription factors that influence the accumulation of anthocyanins, GLK2, and the carboxy termini of GLK1 and Arabidopsis thaliana myeloblastosis oncogene homolog 4 (AtMYB4). Our data indicate that the PEL proteins influence the accumulation of chlorophyll and many other processes, possibly by inhibiting GLK transcription factors and via other mechanisms, and that multiple mechanisms downregulate chlorophyll content.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Antocianinas , Arabidopsis/genética , Estiolamento , Clorofila , Proteínas de Arabidopsis/genética
6.
Plant Physiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748600

RESUMO

Increasing the amount of cellular space allocated to plastids will lead to increases in the quality and yield of crop plants. However, mechanisms that allocate cellular space to plastids remain poorly understood. To test whether the tomato (Solanum lycopersicum L.) REDUCED CHLOROPLAST COVERAGE (SlREC) gene products serve as central components of the mechanism that allocates cellular space to plastids and contribute to the quality of tomato fruit, we knocked out the four-member SlREC gene family. We found that slrec mutants accumulated lower levels of chlorophyll in leaves and fruit, accumulated lower levels of carotenoids in flowers and fruits, allocated less cellular space to plastids in leaf mesophyll and fruit pericarp cells, and developed abnormal plastids in flowers and fruits. Fruit produced by slrec mutants initiated ripening later than wild type and produced abnormal levels of ethylene and ABA. Metabolome and transcriptome analyses of slrec mutant fruit indicated that the SlREC gene products markedly influence plastid-related gene expression, primary and specialized metabolism, and the response to biotic stress. Our findings and previous work with distinct species indicate that REC proteins help allocate cellular space to plastids in diverse species and cell types and, thus, play a central role in allocating cellular space to plastids. Moreover, the SlREC proteins are required for the high-level accumulation of chlorophyll and carotenoids in diverse organs, including fruit, promote the development of plastids, and influence fruit ripening by acting both upstream and downstream of ABA biosynthesis in a complex network.

7.
Plant Cell ; 34(11): 4329-4347, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35916734

RESUMO

The mechanisms underlying leafy heads in vegetables are poorly understood. Here, we cloned a quantitative trait locus (QTL) controlling leafy heads in lettuce (Lactuca sativa). The QTL encodes a transcription factor, SAWTOOTH 1 (LsSAW1), which has a BEL1-like homeodomain and is a homolog of Arabidopsis thaliana. A 1-bp deletion in Lssaw1 contributes to the development of leafy heads. Laser-capture microdissection and RNA-sequencing showed that LsSAW1 regulates leaf dorsiventrality and loss-of-function of Lssaw1 downregulates the expression of many adaxial genes but upregulates abaxial genes. LsSAW1 binds to the promoter region of the adaxial gene ASYMMETRIC LEAVES 1 (LsAS1) to upregulate its expression. Overexpression of LsAS1 compromised the effects of Lssaw1 on heading. LsSAW1 also binds to the promoter region of the abaxial gene YABBY 1 (LsYAB1), but downregulates its expression. Overexpression of LsYAB1 led to bending leaves in LsSAW1 genotypes. LsSAW1 directly interacts with KNOTTED 1 (LsKN1), which is necessary for leafy heads in lettuce. RNA-seq data showed that LsSAW1 and LsKN1 exert antagonistic effects on the expression of thousands of genes. LsSAW1 compromises the ability of LsKN1 to repress LsAS1. Our results suggest that downregulation or loss-of-function of adaxial genes and upregulation of abaxial genes allow for the development of leafy heads.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lactuca/genética , Lactuca/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
8.
Proc Natl Acad Sci U S A ; 119(43): e2206076119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36260744

RESUMO

Although interactions between the cytoplasmic and nuclear genomes occurred during diversification of many plants, the evolutionary conflicts due to cytonuclear interactions are poorly understood in crop breeding. Here, we constructed a pan-mitogenome and identified chimeric open reading frames (ORFs) generated by extensive structural variations (SVs). Meanwhile, short reads from 184 accessions of citrus species were combined to construct three variation maps for the nuclear, mitochondrial, and chloroplast genomes. The population genomic data showed discordant topologies between the cytoplasmic and nuclear genomes because of differences in mutation rates and levels of heteroplasmy from paternal leakage. An analysis of species-specific SVs indicated that mitochondrial heteroplasmy was common and that chloroplast heteroplasmy was undetectable. Interestingly, we found a prominent divergence in the mitogenomes and the highest genetic load in the, which may provide the basis for cytoplasmic male sterility (CMS) and thus influence the reshuffling of the cytoplasmic and nuclear genomes during hybridization. Using cytoplasmic replacement experiments, we identified a type of species-specific CMS in mandarin related to two chimeric mitochondrial genes. Our analyses indicate that cytoplasmic genomes from mandarin have rarely been maintained in hybrids and that paternal leakage produced very low levels of mitochondrial heteroplasmy in mandarin. A genome-wide association study (GWAS) provided evidence for three nuclear genes that encode pentatricopeptide repeat (PPR) proteins contributing to the cytonuclear interactions in the Citrus genus. Our study demonstrates the occurrence of evolutionary conflicts between cytoplasmic and nuclear genomes in citrus and has important implications for genetics and breeding.


Assuntos
Citrus , Genoma de Cloroplastos , Domesticação , Citrus/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genoma de Cloroplastos/genética
9.
Plant Biotechnol J ; 22(5): 1113-1131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38038155

RESUMO

Self-incompatibility (SI) is a widespread prezygotic mechanism for flowering plants to avoid inbreeding depression and promote genetic diversity. Citrus has an S-RNase-based SI system, which was frequently lost during evolution. We previously identified a single nucleotide mutation in Sm-RNase, which is responsible for the loss of SI in mandarin and its hybrids. However, little is known about other mechanisms responsible for conversion of SI to self-compatibility (SC) and we identify a completely different mechanism widely utilized by citrus. Here, we found a 786-bp miniature inverted-repeat transposable element (MITE) insertion in the promoter region of the FhiS2-RNase in Fortunella hindsii Swingle (a model plant for citrus gene function), which does not contain the Sm-RNase allele but are still SC. We demonstrate that this MITE plays a pivotal role in the loss of SI in citrus, providing evidence that this MITE insertion prevents expression of the S-RNase; moreover, transgenic experiments show that deletion of this 786-bp MITE insertion recovers the expression of FhiS2-RNase and restores SI. This study identifies the first evidence for a role for MITEs at the S-locus affecting the SI phenotype. A family-wide survey of the S-locus revealed that MITE insertions occur frequently adjacent to S-RNase alleles in different citrus genera, but only certain MITEs appear to be responsible for the loss of SI. Our study provides evidence that insertion of MITEs into a promoter region can alter a breeding strategy and suggests that this phenomenon may be broadly responsible for SC in species with the S-RNase system.


Assuntos
Citrus , Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Citrus/genética , Melhoramento Vegetal , Mutação , Ribonucleases/metabolismo
10.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35834931

RESUMO

Protein phylogenetic analysis focuses on the evolutionary relationships among related protein sequences and can help researchers infer protein functions and developmental trajectories. With the advent of the big data era, the existing protein phylogenetic methods, including distance matrix and character-based methods, are facing challenges in both running time and application scope. Here, we developed an R package that we call CProtMEDIAS that is useful for protein phylogenetic analysis. In contrast to existing phylogenetic analysis methods, CProtMEDIAS utilizes dimensionality reduction algorithms to digitize multiple sequence alignments and quickly conduct phylogenetic analysis with a large number of amino acid sequences from similarly distant protein families and species. We used CProtMEDIAS to perform a dimensionality reduction, clustering, pseudotime, specific residue and evolutionary trajectory analysis of the plant homeobox superfamily. We found that CProtMEDIAS delivers consistent clustering, fast running and elegant presentation and thus provides powerful new tools and methods for protein clustering and evolutionary analysis.


Assuntos
Algoritmos , Proteínas , Sequência de Aminoácidos , Análise por Conglomerados , Filogenia , Proteínas/química , Proteínas/genética , Alinhamento de Sequência
11.
Plant Cell ; 33(10): 3293-3308, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338777

RESUMO

The degree of stigma exsertion has a major influence on self-pollination efficiency in tomato, and its improvement is essential for raising productivity and for fixing advantageous traits in cultivated tomato. To study the evolution of stigma exsertion degree in tomato, we searched for genes associated with this trait and other aspects of flower morphology, including the lengths of anthers, styles, and ovaries. We performed a genome-wide association on 277 tomato accessions and discovered a novel stigma exsertion gene (SE3.1). We reannotated the structure of the gene, which encodes a C2H2-type zinc finger transcription factor. A mutation of the lead single nucleotide polymorphism creates a premature termination codon in SE3.1 and an inserted stigma in cultivated tomatoes. SE3.1 is essential for the conversion of flush stigmas to inserted stigmas. This conversion has a major impact on the rate of self-fertilization. Intriguingly, we found that both SE3.1 and Style2.1 contribute to the transition from stigma exsertion to insertion during the domestication and improvement of tomato. Style2.1 controls the first step of exserted stigmas to flush stigmas, and SE3.1 controls the second step of flush stigmas to inserted stigmas. We provide molecular details for the two-step process that controls the transition from stigma exsertion to insertion, which is of great agronomic importance in tomato.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Polinização/genética , Solanum lycopersicum/fisiologia , Fatores de Transcrição/genética , Solanum lycopersicum/genética , Mutação , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
12.
Plant Biotechnol J ; 21(4): 792-805, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36582069

RESUMO

Jasmonic acid (JA) plays an important role in regulating plant growth and defence responses. Here, we show that a transcription factor that belongs to the B-box (BBX) family named SlBBX20 regulates resistance to Botrytis cinerea in tomato by modulating JA signalling. The response to JA was significantly suppressed when SlBBX20 was overexpressed in tomato. By contrast, the JA response was enhanced in SlBBX20 knockout lines. RNA sequencing analysis provided more evidence that SlBBX20 modulates the expression of genes that are involved in JA signalling. We found that SlBBX20 interacts with SlMED25, a subunit of the Mediator transcriptional co-activator complex, and prevents the accumulation of the SlMED25 protein and transcription of JA-responsive genes. JA contributes to the defence response against necrotrophic pathogens. Knocking out SlBBX20 or overexpressing SlMED25 enhanced tomato resistance to B. cinerea. The resistance was impaired when SlBBX20 was overexpressed in plants that also overexpressed SlMED25. These data show that SlBBX20 attenuates JA signalling by regulating SlMED25. Interestingly, in addition to developing enhanced resistance to B. cinerea, SlBBX20-KO plants also produced higher fruit yields. SlBBX20 is a potential target gene for efforts that aim to develop elite crop varieties using gene editing technologies.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Oxilipinas/metabolismo , Transdução de Sinais/genética , Botrytis , Ciclopentanos/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Resistência à Doença/genética
13.
Proc Natl Acad Sci U S A ; 117(52): 33668-33678, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33288708

RESUMO

Leafy head is a unique type of plant architecture found in some vegetable crops, with leaves bending inward to form a compact head. The genetic and molecular mechanisms underlying leafy head in vegetables remain poorly understood. We genetically fine-mapped and cloned a major quantitative trait locus controlling heading in lettuce. The candidate gene (LsKN1) is a homolog of knotted 1 (KN1) from Zea mays Complementation and CRISPR/Cas9 knockout experiments confirmed the role of LsKN1 in heading. In heading lettuce, there is a CACTA-like transposon inserted into the first exon of LsKN1 (LsKN1▽). The transposon sequences act as a promoter rather than an enhancer and drive high expression of LsKN1▽. The enhanced expression of LsKN1▽ is necessary but not sufficient for heading in lettuce. Data from ChIP-sequencing, electrophoretic mobility shift assays, and dual luciferase assays indicate that the LsKN1▽ protein binds the promoter of LsAS1 and down-regulates its expression to alter leaf dorsoventrality. This study provides insight into plant leaf development and will be useful for studies on heading in other vegetable crops.


Assuntos
Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Lactuca/genética , Mutagênese Insercional/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Proteínas de Plantas/genética , Regulação para Cima/genética , Sequência de Bases , Duplicação Gênica , Genes de Plantas , Lactuca/anatomia & histologia , Filogenia , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/química , Regiões Promotoras Genéticas/genética , Ligação Proteica , Locos de Características Quantitativas/genética , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
14.
Plant Dis ; 107(3): 834-839, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35997670

RESUMO

Verticillium dahliae causes Verticillium wilt, resulting in significant losses to potato production. Benzovindiflupyr, a succinate dehydrogenase inhibitor, effectively controls V. dahliae. However, frequent applications of the chemical may expedite the development of fungicide resistance in the pathogen population. To evaluate the risk of benzovindiflupyr resistance, 38 V. dahliae strains were obtained from diseased potatoes in Maine. The sensitivity of the field population was determined based on effective concentration for 50% inhibition (EC50), which ranged from 0.07 to 11.28 µg ml-1 with a median of 1.08. Segregated clusters of EC50 values indicated that Maine V. dahliae populations have developed benzovindiflupyr resistance. By exposing conidia of V. dahliae to a high concentration of benzovindiflupyr, 18 benzovindiflupyr-resistant mutants were obtained. To examine their fitness, the mutants were continuously subculture-transferred for up to 10 generations. Mycelial growth, conidial production, competitiveness, pathogenicity, and cross resistance of the 10th generation mutants were examined. Results showed that 50% of the resistant mutants retained an adaptive level in mycelial growth, and 60% maintained conidial production similar to their parents. Pathogenicity did not change for any of the mutants. No cross resistance was detected between benzovindiflupyr and either azoxystrobin, boscalid, fluopyram, or pyrimethanil. Thus, the resistance risk in V. dahliae to benzovindiflupyr should be considered in Maine potato production.


Assuntos
Ascomicetos , Verticillium , Maine , Verticillium/fisiologia
15.
Plant Dis ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36774584

RESUMO

Potato (Solanum tuberosum) plants showing blackleg and soft rot symptoms were collected at a commercial vegetable farm near Newmanstown, PA in August 2021 (Fig. S1). The incidence of potato blackleg in the unirrigated field was about 5 to 8%, but approximately 30% in the irrigated field. The diseased stems were cut into 5 cm and surface disinfected. The stem segments were placed into a 50-mL tube containing 15 mL of sterile water for 15 min for bacterial release. The bacterial suspension was streaked on crystal violet polypectate (CVP) (Hélias et al. 2012) plates and incubated at 28°C for 48 h. Three single colonies produced pits on CVP were picked and purified. Genomic DNA of all three isolates were extracted using the FastDNA Spin Kit (MP Biomedicals, Santa Ana, CA). Polymerase chain reaction (PCR) was performed using all three extracted DNAs as a template with the primer pairs gapA 7F/938R (Cigna et al. 2017), recA F/R (Waleron et al. 2001), dnaA F/R (Schneider et al. 2011) and dnaX F/R (Slawiak et al. 2009) targeting the gapA, recA, dnaA and dnaX genes, respectively. Isolate 21PA01 was further studied as a representative isolate. PCR amplicons derived from both forward and reverse primers were sequenced and analyzed using the BLAST algorithm against the NCBI database (https://www.ncbi.nlm.nih.gov). The regions of gapA (GenBank accession No. ON989738), recA (ON989739), dnaA (OP121183), and dnaX (OP121184) had 99.86%, 100%, 98.88%, and 100% identities with Pectobacterium brasiliense strains S1.16.01.3M (MN167062.1), BL-2 (MW721598.1), IPO:4132 (CP059956.1), and BL-2 (MW721603.1), respectively. A phylogenetic maximum-likelihood tree of the concatenated genes with the length of 2551 bp was constructed to visualize the relationship among different species of Dickeya and Pectobacterium. As a result, 21PA01 was in a single monophyletic cluster with other Pectobacterium brasiliense reference strains (Fig. S2 C). To confirm the pathogen, Koch's postulates were performed. Seed pieces of potato 'Lamoka' were planted in potting mix in one-gallon plastic pots in a greenhouse. Three weeks after emergence, the stems of three plants were each injected with 10 µL of bacteria suspension of either 21PA01 at 107 CFU/mL, P. parmentieri ME175 in tryptic soy broth (TSB) at 107 CFU/mL or TSB at 2 cm above the soil line. Seven days after inoculation, stems inoculated with 21PA01 and ME175 showed black and rotten symptoms, whereas the TSB-injected control plants remained symptomless. In addition, 'Lamoka' tubers were inoculated by placing 10 µL 21PA01 and ME175 suspensions at 107 CFU/mL, and TSB in a 1-cm-deep hole poked in a tuber separately and then sealed with petroleum gel, followed by incubation in a moist chamber at 22 °C for 4 d. The 21PA01 and ME175 inoculated tubers showed soft rot symptoms, but the TSB treatment had no symptoms. Bacterial colonies were isolated from the infected stems and confirmed by the DNA sequences as described above. PCR result was negative on control plant samples. Both stem and tuber inoculation trials were repeated two times, and the results were consistent. Thus, 21PA01 was identified as Pectobacterium brasiliense. To our knowledge, this is the first report of P. brasiliense infecting potatoes in Pennsylvania, USA, although it has been reported somewhere else (van der Merwe et al. 2010, Zhao et al. 2018). This could be a new species in Northeastern US.

16.
Plant J ; 106(3): 630-648, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547692

RESUMO

The mechanism that coordinates cell growth and cell cycle progression remains poorly understood; in particular, whether the cell cycle and cell wall biosynthesis are coordinated remains unclear. Recently, cell wall biosynthesis and cell cycle progression were reported to respond to wounding. Nonetheless, no genes are reported to synchronize the biosynthesis of the cell wall and the cell cycle. Here, we report that wounding induces the expression of genes associated with cell wall biosynthesis and the cell cycle, and that two genes, AtMYB46 in Arabidopsis thaliana and RrMYB18 in Rosa rugosa, are induced by wounding. We found that AtMYB46 and RrMYB18 promote the biosynthesis of the cell wall by upregulating the expression of cell wall-associated genes, and that both of them also upregulate the expression of a battery of genes associated with cell cycle progression. Ultimately, this response leads to the development of curled leaves of reduced size. We also found that the coordination of cell wall biosynthesis and cell cycle progression by AtMYB46 and RrMYB18 is evolutionarily conservative in multiple species. In accordance with wounding promoting cell regeneration by regulating the cell cycle, these findings also provide novel insight into the coordination between cell growth and cell cycle progression and a method for producing miniature plants.


Assuntos
Arabidopsis/metabolismo , Ciclo Celular , Parede Celular/metabolismo , Rosa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Rosa/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Transcriptoma
17.
Plant Biotechnol J ; 20(10): 1956-1967, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35748307

RESUMO

Lettuce (Lactuca sativa) is one of the most important vegetables worldwide and an ideal plant for producing protein drugs. Both well-functioning chloroplasts that perform robust photosynthesis and small leaf angles that enable dense planting are essential for high yields. In this study, we used an F2 population derived from a cross between a lettuce cultivar with pale-green leaves and large leaf angles to a cultivar with dark-green leaves and small leaf angles to clone LsNRL4, which encodes an NPH3/RPT2-Like (NRL) protein. Unlike other NRL proteins in lettuce, the LsNRL4 lacks the BTB domain. Knockout mutants engineered using CRISPR/Cas9 and transgenic lines overexpressing LsNRL4 verified that LsNRL4 contributes to chloroplast development, photosynthesis and leaf angle. The LsNRL4 gene was not present in the parent with pale-green leaves and enlarged leaf angles. Loss of LsNRL4 results in the enlargement of chloroplasts, decreases in the amount of cellular space allocated to chloroplasts and defects in secondary cell wall biosynthesis in lamina joints. Overexpressing LsNRL4 significantly improved photosynthesis and decreased leaf angles. Indeed, the plant architecture of the overexpressing lines is ideal for dense planting. In summary, we identified a novel NRL gene that enhances photosynthesis and influences plant architecture. Our study provides new approaches for the breeding of lettuce that can be grown in dense planting in the open field or in modern plant factories. LsNRL4 homologues may also be used in other crops to increase photosynthesis and improve plant architecture.


Assuntos
Lactuca , Melhoramento Vegetal , Cloroplastos/genética , Cloroplastos/metabolismo , Lactuca/genética , Lactuca/metabolismo , Fotossíntese/genética , Folhas de Planta/metabolismo
18.
New Phytol ; 236(6): 2294-2310, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102042

RESUMO

Trichomes that originate from plant aerial epidermis act as mechanical and chemical barriers against herbivores. Although several regulators have recently been identified, the regulatory pathway underlying multicellular trichome formation remains largely unknown in tomato. Here, we report a novel HD-ZIP IV transcription factor, Lanata (Ln), a missense mutation which caused the hairy phenotype. Biochemical analyses demonstrate that Ln separately interacts with two trichome regulators, Woolly (Wo) and Hair (H). Genetic and molecular evidence demonstrates that Ln directly regulates the expression of H. The interaction between Ln and Wo can increase trichome density by enhancing the expression of SlCycB2 and SlCycB3, which we previously showed are involved in tomato trichome formation. Furthermore, SlCycB2 represses the transactivation of the SlCycB3 gene by Ln and vice versa. Our findings provide new insights into the novel regulatory network controlling multicellular trichome formation in tomato.


Assuntos
Solanum lycopersicum , Tricomas , Tricomas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epiderme Vegetal/metabolismo
19.
Plant Physiol ; 187(4): 2674-2690, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34636879

RESUMO

The most common response of a host to pathogens is arguably the asymptomatic response. However, the genetic and molecular mechanisms responsible for asymptomatic responses to pathogens are poorly understood. Here we report on the genetic cloning of two genes controlling the asymptomatic response to tobacco mosaic virus (TMV) in cultivated tobacco (Nicotiana tabacum). These two genes are homologous to tobamovirus multiplication 2A (TOM2A) from Arabidopsis, which was shown to be critical for the accumulation of TMV. Expression analysis indicates that the TOM2A genes might play fundamental roles in plant development or in responses to stresses. Consistent with this hypothesis, a null allele of the TOM2A ortholog in tomato (Solanum lycopersicum) led to the development of bent branches and a high tolerance to both TMV and tomato mosaic virus (ToMV). However, the TOM2A ortholog in Nicotiana glauca did not account for the asymptomatic response to TMV in N. glauca. We showed that TOM2A family is plant-specific and originated from Chlorophyte, and the biological functions of TOM2A orthologs to promote TMV accumulation are highly conserved in the plant kingdom-in both TMV host and nonhost species. In addition, we showed that the interaction between tobacco TOM1 and TOM2A orthologs in plant species is conserved, suggesting a conserved nature of TOM1-TOM2A module in promoting TMV multiplication in plants. The tradeoff between host development, the resistance of hosts to pathogens, and their influence on gene evolution are discussed. Our results shed light on mechanisms that contribute to asymptomatic responses to viruses in plants and provide approaches for developing TMV/ToMV-resistant crops.


Assuntos
Nicotiana/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Vírus do Mosaico do Tabaco/fisiologia , Arabidopsis/genética , Proteínas de Plantas/metabolismo , Nicotiana/microbiologia , Replicação Viral
20.
Plant Physiol ; 187(2): 829-845, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608960

RESUMO

Domesticated citrus varieties are woody perennials and interspecific hybrid crops of global economic and nutritional importance. The citrus fruit "hesperidium" is a unique morphological innovation not found in any other plant lineage. Efforts to improve the nutritional quality of the fruit are predicated on understanding the underlying regulatory mechanisms responsible for fruit development, including temporal control of chlorophyll degradation and carotenoid biosynthesis. Here, we investigated the molecular basis of the navel orange (Citrus sinensis) brown flavedo mutation, which conditions flavedo that is brown instead of orange. To overcome the limitations of using traditional genetic approaches in citrus and other woody perennials, we developed a strategy to elucidate the underlying genetic lesion. We used a multi-omics approach to collect data from several genetic sources and plant chimeras to successfully decipher this mutation. The multi-omics strategy applied here will be valuable in driving future gene discovery efforts in citrus as well as in other woody perennial plants. The comparison of transcriptomic and genomic data from multiple genotypes and plant sectors revealed an underlying lesion in the gene encoding STAY-GREEN (SGR) protein, which simultaneously regulates carotenoid biosynthesis and chlorophyll degradation. However, unlike SGR of other plant species, we found that the carotenoid and chlorophyll regulatory activities could be uncoupled in the case of certain SGR alleles in citrus and thus we propose a model for the molecular mechanism underlying the brown flavedo phenotype. The economic and nutritional value of citrus makes these findings of wide interest. The strategy implemented, and the results obtained, constitute an advance for agro-industry by driving opportunities for citrus crop improvement.


Assuntos
Carotenoides/metabolismo , Clorofila/metabolismo , Citrus sinensis/metabolismo , Frutas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA