Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell ; 180(4): 666-676.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084339

RESUMO

The mystery of general anesthesia is that it specifically suppresses consciousness by disrupting feedback signaling in the brain, even when feedforward signaling and basic neuronal function are left relatively unchanged. The mechanism for such selectiveness is unknown. Here we show that three different anesthetics have the same disruptive influence on signaling along apical dendrites in cortical layer 5 pyramidal neurons in mice. We found that optogenetic depolarization of the distal apical dendrites caused robust spiking at the cell body under awake conditions that was blocked by anesthesia. Moreover, we found that blocking metabotropic glutamate and cholinergic receptors had the same effect on apical dendrite decoupling as anesthesia or inactivation of the higher-order thalamus. If feedback signaling occurs predominantly through apical dendrites, the cellular mechanism we found would explain not only how anesthesia selectively blocks this signaling but also why conscious perception depends on both cortico-cortical and thalamo-cortical connectivity.


Assuntos
Anestésicos Gerais/farmacologia , Córtex Cerebral/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Antagonistas Colinérgicos/farmacologia , Estado de Consciência , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Células Piramidais/fisiologia , Transmissão Sináptica , Tálamo/citologia , Tálamo/efeitos dos fármacos , Tálamo/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(46): e2308670120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37939085

RESUMO

Understanding the neurobiological mechanisms underlying consciousness remains a significant challenge. Recent evidence suggests that the coupling between distal-apical and basal-somatic dendrites in thick-tufted layer 5 pyramidal neurons (L5PN), regulated by the nonspecific-projecting thalamus, is crucial for consciousness. Yet, it is uncertain whether this thalamocortical mechanism can support emergent signatures of consciousness, such as integrated information. To address this question, we constructed a biophysical network of dual-compartment thick-tufted L5PN, with dendrosomatic coupling controlled by thalamic inputs. Our findings demonstrate that integrated information is maximized when nonspecific thalamic inputs drive the system into a regime of time-varying synchronous bursting. Here, the system exhibits variable spiking dynamics with broad pairwise correlations, supporting the enhanced integrated information. Further, the observed peak in integrated information aligns with criticality signatures and empirically observed layer 5 pyramidal bursting rates. These results suggest that the thalamocortical core of the mammalian brain may be evolutionarily configured to optimize effective information processing, providing a potential neuronal mechanism that integrates microscale theories with macroscale signatures of consciousness.


Assuntos
Neurônios , Células Piramidais , Animais , Neurônios/fisiologia , Células Piramidais/fisiologia , Dendritos/fisiologia , Tálamo/fisiologia , Mamíferos
3.
Mol Psychiatry ; 29(10): 2939-2950, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38609585

RESUMO

The hippocampus is crucial for acquiring and retrieving episodic and contextual memories. In previous studies, the inactivation of dentate gyrus (DG) neurons by chemogenetic- and optogenetic-mediated hyperpolarization led to opposing conclusions about DG's role in memory retrieval. One study used Designer Receptors Exclusively Activated by Designer Drugs (DREADD)-mediated clozapine N-oxide (CNO)-induced hyperpolarization and reported that the previously formed memory was erased, thus concluding that denate gyrus is needed for memory maintenance. The other study used optogenetic with halorhodopsin induced hyperpolarization and reported and dentate gyrus is needed for memory retrieval. We hypothesized that this apparent discrepancy could be due to the length of hyperpolarization in previous studies; minutes by optogenetics and several hours by DREADD/CNO. Since hyperpolarization interferes with anterograde and retrograde neuronal signaling, it is possible that the memory engram in the dentate gyrus and the entorhinal to hippocampus trisynaptic circuit was erased by long-term, but not with short-term hyperpolarization. We developed and applied an advanced chemogenetic technology to selectively silence synaptic output by blocking neurotransmitter release without hyperpolarizing DG neurons to explore this apparent discrepancy. We performed in vivo electrophysiology during trace eyeblink in a rabbit model of associative learning. Our work shows that the DG output is required for memory retrieval. Based on previous and recent findings, we propose that the actively functional anterograde and retrograde neuronal signaling is necessary to preserve synaptic memory engrams along the entorhinal cortex to the hippocampal trisynaptic circuit.


Assuntos
Giro Denteado , Rememoração Mental , Neurônios , Optogenética , Giro Denteado/fisiologia , Giro Denteado/efeitos dos fármacos , Animais , Neurônios/fisiologia , Neurônios/metabolismo , Masculino , Optogenética/métodos , Rememoração Mental/fisiologia , Rememoração Mental/efeitos dos fármacos , Coelhos , Clozapina/análogos & derivados , Clozapina/farmacologia , Memória/fisiologia , Hipocampo/fisiologia , Hipocampo/metabolismo
4.
Cereb Cortex ; 33(23): 11354-11372, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37851709

RESUMO

Neocortical layer 1 has been proposed to be at the center for top-down and bottom-up integration. It is a locus for interactions between long-range inputs, layer 1 interneurons, and apical tuft dendrites of pyramidal neurons. While input to layer 1 has been studied intensively, the level and effect of input to this layer has still not been completely characterized. Here we examined the input to layer 1 of mouse somatosensory cortex with retrograde tracing and optogenetics. Our assays reveal that local input to layer 1 is predominantly from layers 2/3 and 5 pyramidal neurons and interneurons, and that subtypes of local layers 5 and 6b neurons project to layer 1 with different probabilities. Long-range input from sensory-motor cortices to layer 1 of somatosensory cortex arose predominantly from layers 2/3 neurons. Our optogenetic experiments showed that intra-telencephalic layer 5 pyramidal neurons drive layer 1 interneurons but have no effect locally on layer 5 apical tuft dendrites. Dual retrograde tracing revealed that a fraction of local and long-range neurons was both presynaptic to layer 5 neurons and projected to layer 1. Our work highlights the prominent role of local inputs to layer 1 and shows the potential for complex interactions between long-range and local inputs, which are both in position to modify the output of somatosensory cortex.


Assuntos
Neurônios , Córtex Somatossensorial , Camundongos , Animais , Córtex Somatossensorial/fisiologia , Neurônios/fisiologia , Dendritos/fisiologia , Células Piramidais/fisiologia , Interneurônios/fisiologia
5.
Brain ; 145(10): 3608-3621, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35603900

RESUMO

The lipid phosphatase PTEN (phosphatase and tensin homologue on chromosome 10) is a key tumour suppressor gene and an important regulator of neuronal signalling. PTEN mutations have been identified in patients with autism spectrum disorders, characterized by macrocephaly, impaired social interactions and communication, repetitive behaviour, intellectual disability, and epilepsy. PTEN enzymatic activity is regulated by a cluster of phosphorylation sites at the C-terminus of the protein. Here, we focused on the role of PTEN T366 phosphorylation and generated a knock-in mouse line in which Pten T366 was substituted with alanine (PtenT366A/T366A). We identify that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing. We show in behavioural tests that PtenT366/T366A mice exhibit cognitive deficits and selective sensory impairments, with significant differences in male individuals. We identify restricted cellular overgrowth of cortical neurons in PtenT366A/T366A brains, linked to increases in both dendritic arborization and soma size. In a combinatorial approach of anterograde and retrograde monosynaptic tracing using rabies virus, we characterize differences in connectivity to the primary somatosensory cortex of PtenT366A/T366A brains, with imbalances in long-range cortico-cortical input to neurons. We conclude that phosphorylation of PTEN at T366 controls neuron size and connectivity of brain circuits involved in sensory processing and propose that PTEN T366 signalling may account for a subset of autism-related functions of PTEN.


Assuntos
PTEN Fosfo-Hidrolase , Treonina , Animais , Camundongos , Masculino , Treonina/metabolismo , Tensinas/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Neurônios/metabolismo , Alanina/metabolismo , Lipídeos
6.
Annu Rev Neurosci ; 36: 1-24, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23841837

RESUMO

Dendrites are the main recipients of synaptic inputs and are important sites that determine neurons' input-output functions. This review focuses on thin neocortical dendrites, which receive the vast majority of synaptic inputs in cortex but also have specialized electrogenic properties. We present a simplified working-model biophysical scheme of pyramidal neurons that attempts to capture the essence of their dendritic function, including the ability to behave under plausible conditions as dynamic computational subunits. We emphasize the electrogenic capabilities of NMDA receptors (NMDARs) because these transmitter-gated channels seem to provide the major nonlinear depolarizing drive in thin dendrites, even allowing full-blown NMDA spikes. We show how apparent discrepancies in experimental findings can be reconciled and discuss the current status of dendritic spikes in vivo; a dominant NMDAR contribution would indicate that the input-output relations of thin dendrites are dynamically set by network activity and cannot be fully predicted by purely reductionist approaches.


Assuntos
Potenciais de Ação/fisiologia , Dendritos/fisiologia , Neocórtex/citologia , Células Piramidais/citologia , Animais , Dendritos/ultraestrutura , Células Piramidais/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo
7.
J Neurosci ; 39(49): 9818-9830, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31666357

RESUMO

A central function of the brain is to plan, predict, and imagine the effect of movement in a dynamically changing environment. Here we show that in mice head-fixed in a plus-maze, floating on air, and trained to pick lanes based on visual stimuli, the asymmetric movement, and position of whiskers on the two sides of the face signals whether the animal is moving, turning, expecting reward, or licking. We show that (1) whisking asymmetry is coordinated with behavioral state, and that behavioral state can be decoded and predicted based on asymmetry, (2) even in the absence of tactile input, whisker positioning and asymmetry nevertheless relate to behavioral state, and (3) movement of the nose correlates with asymmetry, indicating that facial expression of the mouse is itself correlated with behavioral state. These results indicate that the movement of whiskers, a behavior that is not instructed or necessary in the task, can inform an observer about what a mouse is doing in the maze. Thus, the position of these mobile tactile sensors reflects a behavioral and movement-preparation state of the mouse.SIGNIFICANCE STATEMENT Behavior is a sequence of movements, where each movement can be related to or can trigger a set of other actions. Here we show that, in mice, the movement of whiskers (tactile sensors used to extract information about texture and location of objects) is coordinated with and predicts the behavioral state of mice: that is, what mice are doing, where they are in space, and where they are in the sequence of behaviors.


Assuntos
Aprendizagem em Labirinto/fisiologia , Vibrissas/inervação , Vibrissas/fisiologia , Animais , Comportamento Animal , Comportamento Exploratório/fisiologia , Expressão Facial , Lateralidade Funcional/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nariz/inervação , Nariz/fisiologia , Orientação/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Córtex Somatossensorial/fisiologia , Tato/fisiologia
8.
J Physiol ; 595(5): 1465-1477, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27861906

RESUMO

KEY POINTS: The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light. Synaptic activity and action potentials can independently initiate significant CaMPARI conversion. The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength. When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all-optical method to map synaptic connectivity. ABSTRACT: The calcium-modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed CaMPARI and optogenetics for functional circuit mapping in ex vivo acute brain slices, which preserve in vivo-like connectivity of axon terminals. With a single light source, we stimulated channelrhodopsin-2-expressing long-range posteromedial (POm) thalamic axon terminals in cortex and induced CaMPARI conversion in recipient cortical neurons. We found that POm stimulation triggers robust photoconversion of layer 5 cortical neurons and weaker conversion of layer 2/3 neurons. Thus, CaMPARI enables network-wide, tunable, all-optical functional circuit mapping that captures supra- and subthreshold depolarization.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Potenciais de Ação , Animais , Feminino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Optogenética , Estimulação Luminosa , Transmissão Sináptica
9.
J Neurophysiol ; 116(4): 1542-1553, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27486102

RESUMO

Natural behavior occurs in multiple sensory and motor modalities and in particular is dependent on sensory feedback that constantly adjusts behavior. To investigate the underlying neuronal correlates of natural behavior, it is useful to have access to state-of-the-art recording equipment (e.g., 2-photon imaging, patch recordings, etc.) that frequently requires head fixation. This limitation has been addressed with various approaches such as virtual reality/air ball or treadmill systems. However, achieving multimodal realistic behavior in these systems can be challenging. These systems are often also complex and expensive to implement. Here we present "Air-Track," an easy-to-build head-fixed behavioral environment that requires only minimal computational processing. The Air-Track is a lightweight physical maze floating on an air table that has all the properties of the "real" world, including multiple sensory modalities tightly coupled to motor actions. To test this system, we trained mice in Go/No-Go and two-alternative forced choice tasks in a plus maze. Mice chose lanes and discriminated apertures or textures by moving the Air-Track back and forth and rotating it around themselves. Mice rapidly adapted to moving the track and used visual, auditory, and tactile cues to guide them in performing the tasks. A custom-controlled camera system monitored animal location and generated data that could be used to calculate reaction times in the visual and somatosensory discrimination tasks. We conclude that the Air-Track system is ideal for eliciting natural behavior in concert with virtually any system for monitoring or manipulating brain activity.


Assuntos
Percepção Auditiva , Modelos Animais , Testes Psicológicos , Percepção do Tato , Percepção Visual , Animais , Automação Laboratorial/instrumentação , Comportamento de Escolha , Sinais (Psicologia) , Discriminação Psicológica , Desenho de Equipamento , Cabeça , Aprendizagem , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Impressão Tridimensional , Tempo de Reação , Restrição Física , Recompensa , Gravação em Vídeo
10.
PLoS Comput Biol ; 11(3): e1004090, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25768881

RESUMO

L5 pyramidal neurons are the only neocortical cell type with dendrites reaching all six layers of cortex, casting them as one of the main integrators in the cortical column. What is the nature and mode of computation performed in mouse primary visual cortex (V1) given the physiology of L5 pyramidal neurons? First, we experimentally establish active properties of the dendrites of L5 pyramidal neurons of mouse V1 using patch-clamp recordings. Using a detailed multi-compartmental model, we show this physiological setup to be well suited for coincidence detection between basal and apical tuft inputs by controlling the frequency of spike output. We further show how direct inhibition of calcium channels in the dendrites modulates such coincidence detection. To establish the singe-cell computation that this biophysics supports, we show that the combination of frequency-modulation of somatic output by tuft input and (simulated) calcium-channel blockage functionally acts as a composite sigmoidal function. Finally, we explore how this computation provides a mechanism whereby dendritic spiking contributes to orientation tuning in pyramidal neurons.


Assuntos
Modelos Neurológicos , Células Piramidais/fisiologia , Córtex Visual/fisiologia , Animais , Biologia Computacional , Dendritos/fisiologia , Camundongos , Sinapses/fisiologia
11.
Nature ; 457(7233): 1137-41, 2009 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19151696

RESUMO

The computational power of single neurons is greatly enhanced by active dendritic conductances that have a large influence on their spike activity. In cortical output neurons such as the large pyramidal cells of layer 5 (L5), activation of apical dendritic calcium channels leads to plateau potentials that increase the gain of the input/output function and switch the cell to burst-firing mode. The apical dendrites are innervated by local excitatory and inhibitory inputs as well as thalamic and corticocortical projections, which makes it a formidable task to predict how these inputs influence active dendritic properties in vivo. Here we investigate activity in populations of L5 pyramidal dendrites of the somatosensory cortex in awake and anaesthetized rats following sensory stimulation using a new fibre-optic method for recording dendritic calcium changes. We show that the strength of sensory stimulation is encoded in the combined dendritic calcium response of a local population of L5 pyramidal cells in a graded manner. The slope of the stimulus-response function was under the control of a particular subset of inhibitory neurons activated by synaptic inputs predominantly in L5. Recordings from single apical tuft dendrites in vitro showed that activity in L5 pyramidal neurons disynaptically coupled via interneurons directly blocks the initiation of dendritic calcium spikes in neighbouring pyramidal neurons. The results constitute a functional description of a cortical microcircuit in awake animals that relies on the active properties of L5 pyramidal dendrites and their very high sensitivity to inhibition. The microcircuit is organized so that local populations of apical dendrites can adaptively encode bottom-up sensory stimuli linearly across their full dynamic range.


Assuntos
Dendritos/fisiologia , Interneurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Anestesia , Animais , Cálcio/metabolismo , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Modelos Neurológicos , Ratos , Ratos Wistar , Vigília/fisiologia
12.
J Neurosci ; 33(27): 11184-93, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23825421

RESUMO

In layer 5 neocortical pyramidal neurons, backpropagating action potentials (bAPs) firing at rates above a critical frequency (CF) induce supralinear Ca²âº influx and regenerative potentials in apical dendrites. Paired temporally with an EPSP, this Ca²âº influx can result in synaptic plasticity. We studied the actions of neuropeptide Y (NPY), an abundant neocortical neuropeptide, on Ca²âº influx in layer 5 pyramidal neurons of somatosensory neocortex in Sprague Dawley and Wistar rats, using a combination of somatic and dendritic intracellular recordings and simultaneous Ca²âº imaging. Ca²âº influx induced by trains of bAPs above a neuron's CF was inhibited by NPY, acting only at the distal dendrite, via Y1 receptors. NPY does not affect evoked synaptic glutamate release, paired synaptic facilitation, or synaptic rundown in longer trains. Extracellular Cs⁺ did not prevent NPY's postsynaptic effects, suggesting it does not act via either G-protein-activated inwardly rectifying K⁺ conductance (G(IRK)) or hyperpolarization-activated, cyclic nucleotide-gated channels. NPY application suppresses the induction of the long-term depression (LTD) normally caused by pairing 100 EPSPs with bursts of 2 bAPs evoked at a supracritical frequency. These findings suggest that distal dendritic Ca²âº influx is necessary for LTD induction, and selective inhibition of this distal dendritic Ca²âº influx by NPY can thus regulate synaptic plasticity in layer 5 pyramidal neurons.


Assuntos
Cálcio/fisiologia , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Neocórtex/fisiologia , Inibição Neural/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/fisiologia , Animais , Cálcio/metabolismo , Hipocampo/metabolismo , Masculino , Neocórtex/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar
13.
Neurosci Biobehav Rev ; 161: 105688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670298

RESUMO

Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.


Assuntos
Deficiências da Aprendizagem , Humanos , Animais , Deficiências da Aprendizagem/fisiopatologia , Deficiências da Aprendizagem/etiologia , Células Piramidais/fisiologia , Transtornos do Espectro Alcoólico Fetal/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Síndrome de Down/fisiopatologia , Síndrome do Cromossomo X Frágil/fisiopatologia
14.
Neuron ; 112(10): 1531-1552, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447578

RESUMO

How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.


Assuntos
Encéfalo , Estado de Consciência , Estado de Consciência/fisiologia , Humanos , Encéfalo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais
15.
J Neurosci ; 32(4): 1377-82, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22279222

RESUMO

Exposure to alcohol in utero is a well known cause of mental retardation in humans. Using experimental models of fetal alcohol spectrum disorder, it has been demonstrated that cortical pyramidal neurons and their projections are profoundly and permanently impaired. Yet, how the functional features of these cells are modified and how such modifications impact cognitive processes is still unknown. To address this, we studied the intrinsic electrophysiological properties of pyramidal neurons in young adult rats (P30-P60) exposed to ethanol inhalation during the first week of postnatal life (P2-P6). Dual whole-cell recordings from the soma and distal apical dendrites were performed and, following the injection of depolarizing current into the dendrites, layer 5 neurons from ethanol-treated (Et) animals displayed a lower number and a shorter duration of dendritic spikes, attributable to a downregulation of calcium electrogenesis. As a consequence, the mean number of action potentials recorded at the soma after dendritic current injection was also lower in Et animals. No significant differences between Et and controls were observed in the firing pattern elicited in layer 5 neurons by steps of depolarizing somatic current, even though the firing rate was significantly lower in Et animals. The firing pattern and the firing rate of layer 2/3 neurons were not affected by alcohol exposure.


Assuntos
Potenciais de Ação/fisiologia , Dendritos/patologia , Etanol/administração & dosagem , Neocórtex/patologia , Células Piramidais/patologia , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Dendritos/efeitos dos fármacos , Etanol/toxicidade , Exposição por Inalação , Neocórtex/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar
16.
J Physiol ; 591(7): 1599-612, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23184512

RESUMO

Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABA(B) receptors inhibit calcium-mediated electrogenesis (Ca(2+) spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca(2+) spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca(2+) imaging we found that all subtypes of VDCCs were present in the Ca(2+) spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca(2+) spikes. Particularly, Ca(v)1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca(2+) spike. Activation of GABA(B) receptors specifically inhibited Ca(v)1 channels. This inhibition of L-type Ca(2+) currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the G(i/o)-ßγ-subunit with Ca(v)1 channels identifying this mechanism as the general pathway of GABA(B) receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca(2+) spike provides new insights into the molecular mechanism of dendritic computation.


Assuntos
Canais de Cálcio/fisiologia , Células Piramidais/fisiologia , Receptores de GABA-B/fisiologia , Animais , Cálcio/fisiologia , Dendritos/fisiologia , Subunidades Proteicas/fisiologia , Ratos Wistar , Córtex Somatossensorial/fisiologia , Ácido gama-Aminobutírico/fisiologia
17.
Proc Natl Acad Sci U S A ; 107(42): 18185-90, 2010 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-20921404

RESUMO

The mechanisms underlying memory formation in the hippocampal network remain a major unanswered aspect of neuroscience. Although high-frequency activity appears essential for plasticity, salience for memory formation is also provided by activity in ventral tegmental area (VTA) dopamine projections. Here, we report that activation of dopamine D1 receptors in dentate granule cells (DGCs) can preferentially increase dendritic excitability to both high-frequency afferent activity and high-frequency trains of backpropagating action potentials. Using whole-cell patch clamp recordings, calcium imaging, and neuropeptide Y to inhibit postsynaptic calcium influx, we found that activation of dendritic voltage-dependent calcium channels (VDCCs) is essential for dopamine-induced long-term potentiation (LTP), both in rat and human dentate gyrus (DG). Moreover, we demonstrate previously unreported spike-timing-dependent plasticity in the human hippocampus. These results suggest that when dopamine is released in the dentate gyrus with concurrent high-frequency activity there is an increased probability that synapses will be strengthened and reward-associated spatial memories will be formed.


Assuntos
Núcleos Cerebelares/fisiologia , Dendritos/fisiologia , Dopamina/fisiologia , Plasticidade Neuronal/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Núcleos Cerebelares/metabolismo , Dendritos/metabolismo , Humanos , Ativação do Canal Iônico , Potenciação de Longa Duração , Ratos
18.
Trends Neurosci ; 46(12): 1008-1017, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863713

RESUMO

Interactions with large language models (LLMs) have led to the suggestion that these models may soon be conscious. From the perspective of neuroscience, this position is difficult to defend. For one, the inputs to LLMs lack the embodied, embedded information content characteristic of our sensory contact with the world around us. Secondly, the architectures of present-day artificial intelligence algorithms are missing key features of the thalamocortical system that have been linked to conscious awareness in mammals. Finally, the evolutionary and developmental trajectories that led to the emergence of living conscious organisms arguably have no parallels in artificial systems as envisioned today. The existence of living organisms depends on their actions and their survival is intricately linked to multi-level cellular, inter-cellular, and organismal processes culminating in agency and consciousness.


Assuntos
Estado de Consciência , Neurociências , Animais , Humanos , Inteligência Artificial , Estudos de Viabilidade , Evolução Biológica , Mamíferos
19.
Trends Neurosci ; 46(2): 100-109, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462993

RESUMO

How do new ideas come about? The central hypothesis presented here states that insights might happen during mental navigation and correspond to rapid plasticity at the cellular level. We highlight the differences between neocortical and hippocampal mechanisms of insight. We argue that the suddenness of insight can be related to the sudden emergence of place fields in the hippocampus. According to our hypothesis, insights are supported by a state of mind-wandering that can be tied to the process of combining knowledge pieces during sharp-wave ripples (SWRs). Our framework connects the dots between research on creativity, mental navigation, and specific synaptic plasticity mechanisms in the hippocampus.


Assuntos
Hipocampo , Neocórtex , Pensamento , Humanos , Hipocampo/fisiologia , Neocórtex/fisiologia , Plasticidade Neuronal , Pensamento/fisiologia
20.
iScience ; 26(11): 108050, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876798

RESUMO

The organization of fear memory involves the participation of multiple brain regions. However, it is largely unknown how fear memory is formed, which circuit pathways are used for "printing" memory engrams across brain regions, and the role of identified brain circuits in memory retrieval. With advanced genetic methods, we combinatorially blocked presynaptic output and manipulated N-methyl-D-aspartate receptor (NMDAR) in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) before and after cued fear conditioning. Further, we tagged fear-activated neurons during associative learning for optogenetic memory recall. We found that presynaptic mPFC and postsynaptic BLA NMDARs are required for fear memory formation, but not expression. Our results provide strong evidence that NMDAR-dependent synaptic plasticity drives multi-trace systems consolidation for the sequential printing of fear memory engrams from BLA to mPFC and, subsequently, to the other regions, for flexible memory retrieval.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA