Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2317027121, 2024 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159366

RESUMO

The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) functions in the shikimate pathway which is responsible for the production of aromatic amino acids and precursors of other essential secondary metabolites in all plant species. EPSPS is also the molecular target of the herbicide glyphosate. While some plant EPSPS variants have been characterized with reduced glyphosate sensitivity and have been used in biotechnology, the glyphosate insensitivity typically comes with a cost to catalytic efficiency. Thus, there exists a need to generate additional EPSPS variants that maintain both high catalytic efficiency and high glyphosate tolerance. Here, we create a synthetic yeast system to rapidly study and evolve heterologous EPSP synthases for these dual traits. Using known EPSPS variants, we first validate that our synthetic yeast system is capable of recapitulating growth characteristics observed in plants grown in varying levels of glyphosate. Next, we demonstrate that variants from mutagenesis libraries with distinct phenotypic traits can be isolated depending on the selection criteria applied. By applying strong dual-trait selection pressure, we identify a notable EPSPS mutant after just a single round of evolution that displays robust glyphosate tolerance (Ki of nearly 1 mM) and improved enzymatic efficiency over the starting point (~2.5 fold). Finally, we show the crystal structure of corn EPSPS and the top resulting mutants and demonstrate that certain mutants have the potential to outperform previously reported glyphosate-resistant EPSPS mutants, such as T102I and P106S (denoted as TIPS), in whole-plant testing. Altogether, this platform helps explore the trade-off between glyphosate resistance and enzymatic efficiency.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase , Glicina , Glifosato , Saccharomyces cerevisiae , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resistência a Herbicidas/genética
2.
Plant Physiol ; 155(4): 1769-78, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21311030

RESUMO

Lysine acetylation (LysAc), a form of reversible protein posttranslational modification previously known only for histone regulation in plants, is shown to be widespread in Arabidopsis (Arabidopsis thaliana). Sixty-four Lys modification sites were identified on 57 proteins, which operate in a wide variety of pathways/processes and are located in various cellular compartments. A number of photosynthesis-related proteins are among this group of LysAc proteins, including photosystem II (PSII) subunits, light-harvesting chlorophyll a/b-binding proteins (LHCb), Rubisco large and small subunits, and chloroplastic ATP synthase (ß-subunit). Using two-dimensional native green/sodium dodecyl sulfate gels, the loosely PSII-bound LHCb was separated from the LHCb that is tightly bound to PSII and shown to have substantially higher level of LysAc, implying that LysAc may play a role in distributing the LHCb complexes. Several potential LysAc sites were identified on eukaryotic elongation factor-1A (eEF-1A) by liquid chromatography/mass spectrometry and using sequence- and modification-specific antibodies the acetylation of Lys-227 and Lys-306 was established. Lys-306 is contained within a predicted calmodulin-binding sequence and acetylation of Lys-306 strongly inhibited the interactions of eEF-1A synthetic peptides with calmodulin recombinant proteins in vitro. These results suggest that LysAc of eEF-1A may directly affect regulatory properties and localization of the protein within the cell. Overall, these findings reveal the possibility that reversible LysAc may be an important and previously unknown regulatory mechanism of a large number of nonhistone proteins affecting a wide range of pathways and processes in Arabidopsis and likely in all plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Cromatografia Líquida , Complexos de Proteínas Captadores de Luz/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Espectrometria de Massas em Tandem
3.
Pest Manag Sci ; 78(7): 2816-2827, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35395133

RESUMO

BACKGROUND: Herbicide-resistant weeds pose a challenge to agriculture and food production. New herbicide tolerance traits in crops will provide farmers with more options to effectively manage weeds. Mesotrione, a selective pre- and post-emergent triketone herbicide used in corn production, controls broadleaf and some annual grass weeds via hydroxyphenylpyruvate dioxygenase (HPPD) inhibition. Recently, the rice HIS1 gene, responsible for native tolerance to the selective triketone herbicide benzobicyclon, was identified. Expression of HIS1 also confers a modest level of mesotrione resistance in rice. Here we report the use of the HIS1 gene to develop a mesotrione tolerance trait in soybean. RESULTS: Conventional soybean is highly sensitive to mesotrione. Ectopic expression of a codon-optimized version of the rice HIS1 gene (TDO) in soybean confers a commercial level of mesotrione tolerance. In TDO transgenic soybean plants, mesotrione is rapidly and locally oxidized into noninhibitory metabolites in leaf tissues directly exposed to the herbicide. These metabolites are further converted into compounds similar to known classes of plant secondary metabolites. This rapid metabolism prevents movement of mesotrione from treated leaves into vulnerable emerging leaves. Minimizing the accumulation of the herbicide in vulnerable emerging leaves protects the function of HPPD and carotenoid biosynthesis more generally while providing tolerance to mesotrione. CONCLUSIONS: Mesotrione has a favorable environmental and toxicological profile. The TDO-mediated soybean mesotrione tolerance trait described here provides farmers with a new option to effectively manage difficult-to-control weeds using familiar herbicide chemistry. This trait can also be adapted to other mesotrione-sensitive crops (e.g. cotton) for effective weed management. © 2022 Bayer Crop Science. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Dioxigenases , Herbicidas , Oryza , 4-Hidroxifenilpiruvato Dioxigenase/genética , Produtos Agrícolas/genética , Cicloexanonas , Dioxigenases/genética , Dioxigenases/metabolismo , Dioxigenases/farmacologia , Expressão Ectópica do Gene , Resistência a Herbicidas/genética , Herbicidas/química , Oryza/genética , Oryza/metabolismo , Plantas Daninhas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Glycine max/genética , Glycine max/metabolismo
4.
Plant Cell Environ ; 34(4): 592-604, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21309792

RESUMO

We investigated the individual effect of null mutations of each of the four sucrose-phosphate synthase (SPS) genes in Arabidopsis (SPSA1, SPSA2, SPSB and SPSC) on photosynthesis and carbon partitioning. Null mutants spsa1 and spsc led to decreases in maximum SPS activity in leaves by 80 and 13%, respectively, whereas null mutants spsa2 and spsb had no significant effect. Consistently, isoform-specific antibodies detected only the SPSA1 and SPSC proteins in leaf extracts. Leaf photosynthesis at ambient [CO2] was not different among the genotypes but was 20% lower in spsa1 mutants when measured under saturating [CO2] levels. Carbon partitioning at ambient [CO2] was altered only in the spsa1 null mutant. Cold treatment of plants (4 °C for 96 h) increased leaf soluble sugars and starch and increased the leaf content of SPSA1 and SPSC proteins twofold to threefold, and of the four null mutants, only spsa1 reduced leaf non-structural carbohydrate accumulation in response to cold treatment. It is concluded that SPSA1 plays a major role in photosynthetic sucrose synthesis in Arabidopsis leaves, and decreases in leaf SPS activity lead to increased starch synthesis and starch turnover and decreased Ribulose 1,5-bisphosphate regeneration-limited photosynthesis but not ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco)-limited photosynthesis, indicating a limitation of triose-phosphate utilization (TPU).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Carbono/metabolismo , Clorofila/metabolismo , Temperatura Baixa/efeitos adversos , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Isoformas de Proteínas , Ribulosefosfatos/metabolismo , Deleção de Sequência , Trioses/metabolismo
5.
Proc Natl Acad Sci U S A ; 105(40): 15629-34, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18809915

RESUMO

Abscission is a developmental program that results in the active shedding of infected or nonfunctional organs from a plant body. Here, we establish a signaling pathway that controls abscission in Arabidopsis thaliana from ligand, to receptors, to downstream effectors. Loss of function mutations in Inflorescence Deficient in Abscission (IDA), which encodes a predicted secreted small protein, the receptor-like protein kinases HAESA (HAE) and HAESA-like 2 (HSL2), the Mitogen-Activated Protein Kinase Kinase 4 (MKK4) and MKK5, and a dominant-negative form of Mitogen-Activated Protein Kinase 6 (MPK6) in a mpk3 mutant background all have abscission-defective phenotypes. Conversely, expression of constitutively active MKKs rescues the abscission-defective phenotype of hae hsl2 and ida plants. Additionally, in hae hsl2 and ida plants, MAP kinase activity is reduced in the receptacle, the part of the stem that holds the floral organs. Plants overexpressing IDA in a hae hsl2 background have abscission defects, indicating HAE and HSL2 are epistatic to IDA. Taken together, these results suggest that the sequential action of IDA, HAE and HSL2, and a MAP kinase cascade regulates the programmed separation of cells in the abscission zone.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Sistema de Sinalização das MAP Quinases , Mutação , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais
6.
Plant J ; 58(3): 450-63, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19154203

RESUMO

Precise regulatory mechanisms are necessary to properly control the enlargement and patterning of plant lateral organs. However, our understanding of the regulatory modules that govern both of these processes is limited. An emerging theme in plant development is microRNA (miRNA)-mediated gene regulation of transcription factors, including several NAC domain family members such as CUP-SHAPED COTYLEDON2 (CUC2). We uncovered a novel allele of CUC2, cuc2-1D, that revealed important functions of miRNAs and CUC2 in a regulatory module governing lateral organ enlargement and patterning. cuc2-1D carried a single point mutation in the CUC2 miRNA target site, disrupting miRNA targeting. Disruption of the tight balance between CUC2 and its targeting miRNA, miRNA164, led to over-accumulation of CUC2 mRNA and expansion of the CUC2 expression domain. cuc2-1D plants had enlarged vegetative and reproductive lateral organs relative to wild-type plants. Mechanistically, these enlarged organs resulted from an increase in cell proliferation that occurred over a longer developmental time frame relative to wild-type. This organ enlargement was dependent on the receptor-like kinase, ERECTA (ER). This and lateral organ patterning phenotypes in cuc2-1D suggest that miRNA164 and CUC2 are critical regulators of both processes. Therefore, we propose that miRNA164 and CUC2 form a central regulatory module that acts as a governor of lateral organ patterning and expansion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Microscopia Eletrônica de Varredura , Tamanho do Órgão , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Mutação Puntual , RNA de Plantas/genética
7.
Biochem J ; 422(2): 305-12, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19527223

RESUMO

The mechanisms involved in sensing oxidative signalling molecules, such as H2O2, in plant and animal cells are not completely understood. In the present study, we tested the postulate that oxidation of Met (methionine) to MetSO (Met sulfoxide) can couple oxidative signals to changes in protein phosphorylation. We demonstrate that when a Met residue functions as a hydrophobic recognition element within a phosphorylation motif, its oxidation can strongly inhibit peptide phosphorylation in vitro. This is shown to occur with recombinant soybean CDPKs (calcium-dependent protein kinases) and human AMPK (AMP-dependent protein kinase). To determine whether this effect may occur in vivo, we monitored the phosphorylation status of Arabidopsis leaf NR (nitrate reductase) on Ser534 using modification-specific antibodies. NR was a candidate protein for this mechanism because Met538, located at the P+4 position, serves as a hydrophobic recognition element for phosphorylation of Ser534 and its oxidation substantially inhibits phosphorylation of Ser534 in vitro. Two lines of evidence suggest that Met oxidation may inhibit phosphorylation of NR-Ser534 in vivo. First, phosphorylation of NR at the Ser534 site was sensitive to exogenous H2O2 and secondly, phosphorylation in normal darkened leaves was increased by overexpression of the cytosolic MetSO-repair enzyme PMSRA3 (peptide MetSO reductase A3). These results are consistent with the notion that oxidation of surface-exposed Met residues in kinase substrate proteins, such as NR, can inhibit the phosphorylation of nearby sites and thereby couple oxidative signals to changes in protein phosphorylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metionina/metabolismo , Estresse Oxidativo/fisiologia , Arabidopsis/química , Proteínas de Arabidopsis/química , Metionina/química , Oxirredução , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilação , Folhas de Planta/química , Folhas de Planta/metabolismo , Transdução de Sinais/fisiologia
8.
Pest Manag Sci ; 76(3): 1031-1038, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31503398

RESUMO

BACKGROUND: Protoporphyrinogen IX oxidase (PPO)-inhibiting herbicides act by inhibiting a key enzyme in the heme and chlorophyll biosynthetic pathways in plants. This enzyme, the PPO enzyme, is conserved across plant species. However, some microbes are known to utilize a unique family of PPO enzymes, the HemG family. This enzyme family carries out the same enzymatic step as the plant PPO enzymes, but does not share sequence homology with the plant PPO enzymes. RESULTS: Bioinformatic analysis was used to identify putative HemG PPO enzyme variants from microbial sources. A subset of these variants was cloned and characterized. HemG PPO variants were characterized for functionality and tolerance to PPO-inhibiting herbicides. HemG PPO variants that exhibited insensitivity to PPO-inhibiting herbicides were identified for further characterization. Expression of selected variants in maize, soybean, cotton and canola resulted in plants that displayed tolerance to applications of PPO-inhibiting herbicides. CONCLUSION: Selected microbial-sourced HemG PPO enzyme variants present an opportunity for building new herbicide tolerance biotechnology traits. These traits provide tolerance to PPO-inhibiting herbicides and, therefore, could provide additional tools for farmers to employ in their weed management systems. © 2019 Society of Chemical Industry.


Assuntos
Biotecnologia , Herbicidas , Protoporfirinogênio Oxidase , Glycine max , Zea mays
9.
Pest Manag Sci ; 75(8): 2086-2094, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30828945

RESUMO

BACKGROUND: Effective management of weedy species in agricultural fields is essential for maintaining favorable growing conditions and crop yields. The introduction of genetically modified crops containing herbicide tolerance traits has been a successful additional tool available to farmers to better control weeds. However, weed resistance challenges present a need for additional herbicide tolerance trait options. RESULTS: To help meet this challenge, a new trait that provides tolerance to an aryloxyphenoxypropionate (FOP) herbicide and members of the synthetic auxin herbicide family, such as 2,4-dichlorophenoxyacetic acid (2,4-D), was developed. Development of this herbicide tolerance trait employed an enzyme engineered with robust and specific enzymatic activity for these two herbicide families. This engineering effort utilized a microbial-sourced dioxygenase scaffold to generate variants with improved enzymatic parameters. Additional optimization to enhance in-plant stability of the enzyme enabled an efficacious trait that can withstand the higher temperature conditions often found in field environments. CONCLUSION: Optimized herbicide tolerance enzyme variants with enhanced enzymatic and temperature stability parameters enabled robust herbicide tolerance for two herbicide families in transgenic maize and soybeans. This herbicide tolerance trait for FOP and synthetic auxin herbicides such as 2,4-D could be useful in weed management systems, providing additional tools for farmers to control weeds. © 2019 Society of Chemical Industry.


Assuntos
Glycine max/enzimologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Plantas Geneticamente Modificadas/enzimologia , Zea mays/enzimologia , Engenharia Genética , Ácidos Indolacéticos/farmacologia , Plantas Geneticamente Modificadas/genética , Propionatos/farmacologia , Glycine max/genética , Zea mays/genética
10.
Plant Signal Behav ; 4(7): 666-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19820320

RESUMO

The proper regulation of enlargement and patterning of plant lateral organs is essential for plant functionality. In an earlier work, we characterized the role of a microRNA (miRNA)-transcription factor regulatory module, miRNA164-CUC2, in the enlargement and patterning of multiple lateral organs in Arabidopsis. This regulatory module genetically interacts with another transcription factor, CRC, in fruit development patterning. Here, we characterize the genetic interaction of this module with a homeodomain transcription factor, BREVIPEDICELLUS (BP), that has been shown to play roles in leaf development patterning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA