Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Environ Res ; 87(10): 1286-311, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26420089

RESUMO

A review of the literature from 2014 related to automotive wastes is presented. Topics include solid wastes from autobodies and tires as well as vehicle emissions to soil and air as a result of the use of conventional and alternative fuels. Potential toxicological and health risks related to automotive wastes are also discussed.

2.
Environ Sci Technol ; 46(7): 4083-90, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22414149

RESUMO

This paper investigates the effect of adsorption and regeneration temperature on the irreversible adsorption of a mixture of organic compounds typically emitted from automobile painting operations. Adsorption of the organic vapors mixture onto microporous beaded activated carbon (BAC) and regeneration of the saturated BAC were completed under different conditions. Results indicated that increasing the adsorption temperature from 25 to 35 or 45 °C increased heel buildup on BAC by about 30% irrespective of the regeneration temperature due to chemisorption. The adsorption capacity (for the first cycle) of the mixture onto the BAC at these three temperatures remained almost unchanged indicating chemisorption of some of these compounds onto the BAC. Increasing the regeneration temperature from 288 to 400 °C resulted in 61% reduction in the heel at all adsorption temperatures, possibly due to desorption of chemicals from narrow micropores. BET area and pore volumes of the BAC decreased proportionally to the cumulative heel. Pore size distribution and pore volume reduction confirmed that the heel was mainly built up in narrow micropores which can be occupied or blocked by some of the adsorbates.


Assuntos
Carvão Vegetal/química , Microesferas , Compostos Orgânicos/química , Temperatura , Adsorção , Porosidade , Propriedades de Superfície , Termogravimetria , Fatores de Tempo , Volatilização
3.
Phys Fluids (1994) ; 33(3): 033320, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33897239

RESUMO

Aerosolized droplets play a central role in the transmission of various infectious diseases, including Legionnaire's disease, gastroenteritis-causing norovirus, and most recently COVID-19. Respiratory droplets are known to be the most prominent source of transmission for COVID-19; however, alternative routes may exist given the discovery of small numbers of viable viruses in urine and stool samples. Flushing biomatter can lead to the aerosolization of micro-organisms; thus, there is a likelihood that bioaerosols generated in public restrooms may pose a concern for the transmission of COVID-19, especially since these areas are relatively confined, experience heavy foot traffic, and may suffer from inadequate ventilation. To quantify the extent of aerosolization, we measure the size and number of droplets generated by flushing toilets and urinals in a public restroom. The results indicate that the particular designs tested in the study generate a large number of droplets in the size range 0.3 µ m - 3 µ m , which can reach heights of at least 1.52 m. Covering the toilet reduced aerosol levels but did not eliminate them completely, suggesting that aerosolized droplets escaped through small gaps between the cover and the seat. In addition to consistent increases in aerosol levels immediately after flushing, there was a notable rise in ambient aerosol levels due to the accumulation of droplets from multiple flushes conducted during the tests. This highlights the need for incorporating adequate ventilation in the design and operation of public spaces, which can help prevent aerosol accumulation in high occupancy areas and mitigate the risk of airborne disease transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA