Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Ann Bot ; 131(1): 157-170, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35325016

RESUMO

BACKGROUND AND AIMS: Allopolyploidization is a widespread phenomenon known to generate novel phenotypes by merging evolutionarily distinct parental genomes and regulatory networks in a single nucleus. The objective of this study was to investigate the transcriptional regulation associated with phenotypic novelty in coffee beans of the allotetraploid Coffea arabica. METHODS: A genome-wide comparative transcriptomic analysis was performed in C. arabica and its two diploid progenitors, C. canephora and C. eugenioides. Gene expression patterns and homeologue expression were studied on seeds at five different maturation stages. The involvement of homeologue expression bias (HEB) in specific traits was addressed both by functional enrichment analyses and by the study of gene expression in the caffeine and chlorogenic acid biosynthesis pathways. KEY RESULTS: Expression-level dominance in C. arabica seed was observed for most of the genes differentially expressed between the species. Approximately a third of the genes analysed showed HEB. This proportion increased during seed maturation but the biases remained equally distributed between the sub-genomes. The relative expression levels of homeologues remained relatively constant during maturation and were correlated with those estimated in leaves of C. arabica and interspecific hybrids between C. canephora and C. eugenioides. Functional enrichment analyses performed on genes exhibiting HEB enabled the identification of processes potentially associated with physiological traits. The expression profiles of the genes involved in caffeine biosynthesis mirror the differences observed in the caffeine content of mature seeds of C. arabica and its parental species. CONCLUSIONS: Neither of the two sub-genomes is globally preferentially expressed in C. arabica seeds, and homeologues appear to be co-regulated by shared trans-regulatory mechanisms. The observed HEBs are thought to be a legacy of gene expression differences inherited from diploid progenitor species. Pre-existing functional divergences between parental species appear to play an important role in controlling the phenotype of C. arabica seeds.


Assuntos
Coffea , Cafeína/metabolismo , Transcriptoma , Fenótipo , Sementes/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Plant Cell Physiol ; 62(2): 280-292, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33377945

RESUMO

Detecting processes of local adaptation in forest trees and identifying environmental selective drivers are of primary importance for forest management and conservation. Transplant experiments, functional genomics and population genomics are complementary tools to efficiently characterize heritable phenotypic traits and to decipher the genetic bases of adaptive traits. Using an integrative approach combining phenotypic assessment in common garden, transcriptomics and landscape genomics, we investigated leaf adaptive traits in Coffea mauritiana, a forest tree endemic to Reunion Island. Eight populations of C. mauritiana originating from sites with contrasted environmental conditions were sampled in common garden to assess several leaf morphological traits, to analyze the leaf transcriptome and leaf cuticular wax composition. The relative alkane content of cuticular waxes was significantly correlated with major climatic gradients, paving the way for further transcriptome-based analyses. The expression pattern of cuticle biosynthetic genes was consistent with a modulation of alkane accumulation across the population studied, supporting the hypothesis that the composition of cuticular wax is involved in the local adaptation of C. mauritiana. Association tests in landscape genomics performed using RNA-seq-derived single-nucleotide polymorphisms revealed that genes associated with cell wall remodeling also likely play an adaptive role. By combining these different approaches, this study efficiently identified local adaptation processes in a non-model species. Our results provide the first evidence for local adaptation in trees endemic to Reunion Island and highlight the importance of cuticle composition for the adaptation of trees to the high evaporative demand in warm climates.


Assuntos
Coffea/fisiologia , Árvores/fisiologia , Adaptação Fisiológica/fisiologia , Mudança Climática , Coffea/genética , Florestas , Estudo de Associação Genômica Ampla , Genômica , Folhas de Planta/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Reunião , Árvores/genética
3.
J Exp Bot ; 71(4): 1418-1433, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31790120

RESUMO

In contrast to desiccation-tolerant 'orthodox' seeds, so-called 'intermediate' seeds cannot survive complete drying and are short-lived. All species of the genus Coffea produce intermediate seeds, but they show a considerable variability in seed desiccation tolerance (DT), which may help to decipher the molecular basis of seed DT in plants. We performed a comparative transcriptome analysis of developing seeds in three coffee species with contrasting desiccation tolerance. Seeds of all species shared a major transcriptional switch during late maturation that governs a general slow-down of metabolism. However, numerous key stress-related genes, including those coding for the late embryogenesis abundant protein EM6 and the osmosensitive calcium channel ERD4, were up-regulated during DT acquisition in the two species with high seed DT, C. arabica and C. eugenioides. By contrast, we detected up-regulation of numerous genes involved in the metabolism, transport, and perception of auxin in C. canephora seeds with low DT. Moreover, species with high DT showed a stronger down-regulation of the mitochondrial machinery dedicated to the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, respiration measurements during seed dehydration demonstrated that intermediate seeds with the highest DT are better prepared to cease respiration and avoid oxidative stresses.


Assuntos
Coffea , Café , Coffea/genética , Dessecação , Genômica , Sementes/genética
4.
New Phytol ; 224(2): 974-986, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291469

RESUMO

Past climatic fluctuations have played a major role in shaping the current plant biodiversity. Although harbouring an exceptional biota, oceanic islands have received little attention in studies on species demographic history and past vegetation patterns. We investigated the impact of past climatic changes on the effective population size of a tree (Coffea mauritiana) that is endemic to Reunion Island, located in the south-western Indian Ocean (SWIO). Demographic changes were inferred using summary statistics calculated from genomic data. Using ecological niche modelling and the current distribution of genetic diversity, the paleodistribution of the species was also assessed. A reduction in the effective population size of C. mauritiana during the last glaciation maximum was inferred. The distribution of the species was reduced on the western side of the island, due to low rainfall. It appeared that a major reduction in rainfall and a slight temperature decrease prevailed in the SWIO. Our findings indicated that analyses on the current patterns of intraspecific genetic variations can efficiently contribute to past climatic changes characterisation in remote islands. Identifying area with higher resilience in oceanic islands could provide guidance in forest management and conservation faced to the global climate change.


Assuntos
Evolução Biológica , Mudança Climática , Coffea/genética , Coffea/fisiologia , Modelos Biológicos , Oceanos e Mares , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Reunião
5.
Heredity (Edinb) ; 122(6): 833-847, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30478354

RESUMO

Oceanic islands are commonly considered as natural laboratories for studies on evolution and speciation. The evolutionary specificities of islands associated with species biology provide unique scenarios to study the role of geography and climate in driving population divergence. However, few studies have addressed this subject in small oceanic islands with heterogeneous climates. Being widely distributed in Reunion Island forest, Coffea mauritiana represents an interesting model case for investigating patterns of within-island differentiation at small spatial scale. In this study, we examined the genetic diversity and population divergences of C. mauritiana using SNP markers obtained from 323 individuals across 34 locations in Reunion Island. Using redundancy analysis, we further evaluated the contribution of geographic and climatic factors to shaping genetic divergence among populations. Genetic diversity analyses revealed that accessions clustered according to the source population, with further grouping in regional clusters. Genetic relationships among the regional clusters underlined a recent process of expansion in the form of step-by-step colonization on both sides of the island. Divergence among source populations was mostly driven by the joint effect of geographic distance and climatic heterogeneity. The pattern of isolation-by-geography was in accordance with the dispersal characteristics of the species, while isolation-by-environment was mostly explained by the heterogeneous rainfall patterns, probably associated with an asynchronous flowering among populations. These findings advance our knowledge on the patterns of genetic diversity and factors of population differentiation of species native to Reunion Island, and will also usefully guide forest management for conservation.


Assuntos
Coffea/genética , Variação Genética , Coffea/classificação , Evolução Molecular , Deriva Genética , Geografia , Ilhas , Filogenia , Reunião , Árvores/genética
6.
J Exp Bot ; 69(7): 1583-1597, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361125

RESUMO

The 'intermediate seed' category was defined in the early 1990s using coffee (Coffea arabica) as a model. In contrast to orthodox seeds, intermediate seeds cannot survive complete drying, which is a major constraint for seed storage and has implications for both biodiversity conservation and agricultural purposes. However, intermediate seeds are considerably more tolerant to drying than recalcitrant seeds, which are highly sensitive to desiccation. To gain insight into the mechanisms governing such differences, changes in desiccation tolerance (DT), hormone contents, and the transcriptome were analysed in developing coffee seeds. Acquisition of DT coincided with a dramatic transcriptional switch characterised by the repression of primary metabolism, photosynthesis, and respiration, and the up-regulation of genes coding for late-embryogenesis abundant (LEA) proteins, heat-shock proteins (HSPs), and antioxidant enzymes. Analysis of the heat-stable proteome in mature coffee seeds confirmed the accumulation of LEA proteins identified at the transcript level. Transcriptome analysis also suggested a major role for ABA and for the transcription factors CaHSFA9, CaDREB2G, CaANAC029, CaPLATZ, and CaDOG-like in DT acquisition. The ability of CaHSFA9 and CaDREB2G to trigger HSP gene transcription was validated by Agrobacterium-mediated transformation of coffee somatic embryos.


Assuntos
Coffea/fisiologia , Dessecação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Sementes/fisiologia , Transcriptoma , Agrobacterium , Coffea/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Sementes/química , Sementes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plant J ; 87(5): 423-41, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27145323

RESUMO

Global demand for vegetable oils is increasing at a dramatic rate, while our understanding of the regulation of oil biosynthesis in plants remains limited. To gain insights into the mechanisms that govern oil synthesis and fatty acid (FA) composition in the oil palm fruit, we used a multilevel approach combining gene coexpression analysis, quantification of allele-specific expression and joint multivariate analysis of transcriptomic and lipid data, in an interspecific backcross population between the African oil palm, Elaeis guineensis, and the American oil palm, Elaeis oleifera, which display contrasting oil contents and FA compositions. The gene coexpression network produced revealed tight transcriptional coordination of fatty acid synthesis (FAS) in the plastid with sugar sensing, plastidial glycolysis, transient starch storage and carbon recapture pathways. It also revealed a concerted regulation, along with FAS, of both the transfer of nascent FA to the endoplasmic reticulum, where triacylglycerol assembly occurs, and of the production of glycerol-3-phosphate, which provides the backbone of triacylglycerols. Plastid biogenesis and auxin transport were the two other biological processes most tightly connected to FAS in the network. In addition to WRINKLED1, a transcription factor (TF) known to activate FAS genes, two novel TFs, termed NF-YB-1 and ZFP-1, were found at the core of the FAS module. The saturated FA content of palm oil appeared to vary above all in relation to the level of transcripts of the gene coding for ß-ketoacyl-acyl carrier protein synthase II. Our findings should facilitate the development of breeding and engineering strategies in this and other oil crops.


Assuntos
Arecaceae/metabolismo , Óleos de Plantas/metabolismo , Arecaceae/genética , Ácidos Graxos/metabolismo , Frutas/metabolismo , Redes Reguladoras de Genes , Glicólise , Ácido Palmítico/metabolismo , Plastídeos/metabolismo
8.
Nucleic Acids Res ; 43(Database issue): D1028-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392413

RESUMO

The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager.


Assuntos
Coffea/genética , Bases de Dados de Ácidos Nucleicos , Genoma de Planta , Coffea/metabolismo , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas/genética , Polimorfismo de Nucleotídeo Único , Software , Sintenia
9.
Plant J ; 78(4): 674-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24628823

RESUMO

Allopolyploidization is widespread and has played a major role in flowering plant diversification. Genomic changes are common consequences of allopolyploidization, but their mechanisms of occurrence and dynamics over time are still poorly understood. Coffea arabica, a recently formed allotetraploid, was chosen as a model to investigate genetic changes in allopolyploid using an approach that exploits next-generation sequencing technologies. Genes affected by putative homoeolog loss were inferred by comparing the numbers of single-nucleotide polymorphisms detected using RNA-seq in individual accessions of C. arabica, and between accessions of its two diploid progenitor species for common sequence positions. Their physical locations were investigated and clusters of genes exhibiting homoeolog loss were identified. To validate these results, genome sequencing data were generated from one accession of C. arabica and further analyzed. Genomic rearrangements involving homoeologous exchanges appear to occur in C. arabica and to be a major source of genetic diversity. At least 5% of the C. arabica genes were inferred to have undergone homoeolog loss. The detection of a large number of homoeologous exchange events (HEEs) shared by all accessions of C. arabica strongly reinforces the assumption of a single allopolyploidization event. Furthermore, HEEs were specific to one or a few accessions, suggesting that HEE accumulates gradually. Our results provide evidence for the important role of HEE in allopolyploid genome evolution.


Assuntos
Coffea/genética , Genoma de Planta/genética , Poliploidia , Recombinação Genética , Coffea/classificação , Diploide , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Especiação Genética , Variação Genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA/métodos , Especificidade da Espécie
10.
J Exp Bot ; 65(1): 323-37, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203356

RESUMO

The seed of Coffea arabica accumulates large amounts of cell wall storage polysaccharides (CWSPs) of the mannan family in the cell walls of the endosperm. The variability induced by the growing environment and extensive pairwise correlation analysis with stringent significance thresholds was used to investigate transcript-transcript and transcript-metabolite relationships among 26 sugar-related genes, and the amount of CWSPs and seven soluble low molecular weight carbohydrates in the developing coffee endosperm. A dense module of nine quantitatively co-expressed genes was detected at the mid-developmental stage when CWSPs accumulate. This module included the five genes of the core galactomannan synthetic machinery, namely genes coding for the enzymes needed to assemble the mannan backbone (mannan synthase, ManS), and genes that introduce the galactosyl side chains (galactosyltransferase, GMGT), modulate the post-depositional degree of galactose substitution (α-galactosidase), and produce the nucleotide sugar building blocks GDP-mannose and UDP-galactose (mannose-1P guanyltransferase and UDP-glucose 4'-epimerase, respectively). The amount of CWSPs stored in the endosperm at the onset of their accumulation was primarily and quantitatively modulated at the transcriptional level (i.e. positively correlated with the expression level of these key galactomannan biosynthetic genes). This analysis also suggests a role for sorbitol and raffinose family oligosaccharides as transient auxiliary sources of building blocks for galactomannan synthesis. Finally, a microarray-based analysis of the developing seed transcriptome revealed that all genes of the core galactomannan synthesis machinery grouped in a single cluster of 209 co-expressed genes. Analysis of the gene composition of this cluster revealed remarkable functional coherence and identified transcription factors that putatively control galactomannan biosynthesis in coffee.


Assuntos
Coffea/genética , Regulação da Expressão Gênica de Plantas/genética , Mananas/genética , Proteínas de Plantas/genética , Vias Biossintéticas/genética , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Coffea/metabolismo , Endosperma/genética , Endosperma/metabolismo , Galactose/análogos & derivados , Perfilação da Expressão Gênica , Mananas/biossíntese , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/metabolismo , Rafinose/metabolismo , Regulon/genética , Sementes/genética , Sementes/metabolismo , Sorbitol/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA