Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 15(10): 3282-3296, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27281782

RESUMO

Cysteine is a rare and conserved amino acid involved in most cellular functions. The thiol group of cysteine can be subjected to diverse oxidative modifications that regulate many physio-pathological states. In the present work, a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) was synthesized to selectively label cysteine-containing peptides (Cys peptides) followed by their enrichment with titanium dioxide (TiO2) and subsequent mass spectrometric analysis. The CysPAT strategy was developed using a synthetic peptide, a standard protein and subsequently the strategy was applied to protein lysates from Hela cells, achieving high specificity and enrichment efficiency. In particular, for Cys proteome analysis, the method led to the identification of 7509 unique Cys peptides from 500 µg of HeLa cell lysate starting material. Furthermore, the method was developed to simultaneously enrich Cys peptides and phosphorylated peptides. This strategy was applied to SILAC labeled Hela cells subjected to 5 min epidermal growth factor (EGF) stimulation. In total, 10440 unique reversibly modified Cys peptides (3855 proteins) and 7339 unique phosphopeptides (2234 proteins) were simultaneously identified from 250 µg starting material. Significant regulation was observed in both phosphorylation and reversible Cys modification of proteins involved in EGFR signaling. Our data indicates that EGF stimulation can activate the well-known phosphorylation of EGFR and downstream signaling molecules, such as mitogen-activated protein kinases (MAPK1 and MAPK3), however, it also leads to substantial modulation of reversible cysteine modifications in numerous proteins. Several protein tyrosine phosphatases (PTPs) showed a reduction of the catalytic Cys site in the conserved putative phosphatase HC(X)5R motif indicating an activation and subsequent de-phosphorylation of proteins involved in the EGF signaling pathway. Overall, the CysPAT strategy is a straight forward, easy and promising method for studying redox proteomics and the simultaneous enrichment strategy offers an excellent solution for characterization of cross-talk between phosphorylation and redox induced reversible cysteine modifications.


Assuntos
Cisteína/química , Organofosfonatos/síntese química , Peptídeos/química , Proteômica/métodos , Cromatografia Líquida/métodos , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Células HeLa , Humanos , Marcação por Isótopo , Organofosfonatos/química , Fosfopeptídeos/química , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Titânio
2.
J Proteomics ; 273: 104796, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36538968

RESUMO

Diverse post-translational modifications (PTMs) regulate protein function and interaction to fine-tune biological processes. Reversible phosphorylation, cysteines (Cys) modifications, and N-linked glycosylation are all essentially involved in cellular signaling pathways, such as those initiated by the action of pro-inflammatory cytokines, which can induce pancreatic ß-cell death and diabetes. Here we have developed a novel strategy for the simultaneous and comprehensive characterization of the proteome and three PTMs including reversibly modified Cysteines (rmCys), phosphorylation, and sialylated N-linked glycosylation from low amount of sample material. This strategy, termed TiCPG, is based on a combination of chemical labeling and titanium dioxide (TiO2) chromatography. We applied the TiCPG strategy to study the proteome and the three PTMs changes in ß-cells subject to pro-inflammatory cytokines stimulation. It enabled quantitative analysis of 8346 rmCys sites, 10,321 phosphosites and 962 sialylated N-glycosites from 5496 proteins. Significant regulation was found on 100 proteins at the expression level, while 3020 PTM peptide isoforms from 1468 proteins were significantly regulated. The three PTMs were involved in cytokine mediated ß-cell apoptosis, such as the NFκB and the inducible NO synthase signaling pathways. Overall, the TiCPG strategy is a cheap, straightforward, and powerful tool for studies targeting the three PTMs described above. SIGNIFICANCE: The present study presents a fast and easy method for quantitative assessment of the proteome and three PTMs from minimal amount of sample material. This simple method provides comprehensive and significant knowledge on biological systems and cellular signaling with relatively low analysis time, suitable for younger researchers and researchers that do not have direct access to LC-MSMS in their laboratories. From sub-milligram amount of material, we were able to map known cellular signaling events of proinflammatory cytokine effect on beta-cells and to discover novel PTMs involved in several known signaling pathways.


Assuntos
Glicopeptídeos , Fosfopeptídeos , Fosfopeptídeos/análise , Glicopeptídeos/análise , Cisteína , Proteoma , Citocinas , Proteômica/métodos , Processamento de Proteína Pós-Traducional
3.
J Proteomics ; 161: 11-25, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28396268

RESUMO

Phosphorylation and glycosylation are important protein modifications in the mammalian brain acting as drivers of neural development, neurotransmission signalling and neurite elongation as well as synaptic morphology. Despite their important functional roles in the brain, only a few studies have elucidated them in neurodegenerative diseases such as Alzheimer's disease. Here, we comprehensively review Alzheimer's pathology in relation to protein phosphorylation and glycosylation on synaptic plasticity from neuroproteomics data. Moreover, we highlight several mass spectrometry-based sample processing technologies including an in-house developed TiO2-SIMAC-TiO2-based enrichment protocol to isolate and enrich phosphorylated and glycosylated peptides enabling to elucidate hopefully new early disease biomarkers.


Assuntos
Doença de Alzheimer/metabolismo , Plasticidade Neuronal , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Animais , Glicosilação , Humanos , Fosforilação
4.
Oncotarget ; 8(36): 60223-60242, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28947966

RESUMO

Neuroinflammation is a hallmark of Alzheimer's disease and TNFα as the main inducer of neuroinflammation has neurodegenerative but also pro-regenerative properties, however, the dose-dependent molecular changes on signaling pathway level are not fully understood. We performed quantitative proteomics and phospho-proteomics to target this point. In HT22 cells, we found that TNFα reduced mitochondrial signaling and inhibited mTOR protein translation signaling but also led to induction of neuroprotective MAPK-CREB signaling. Stimulation of human neurons with TNFα revealed similar cellular mechanisms. Moreover, a number of synaptic plasticity-associated genes were altered in their expression profile including CREB. SiRNA-mediated knockdown of CREB in human neurons prior to TNFα stimulation led to a reduced number of protein/phospho-protein hits compared to siRNA-mediated knockdown of CREB or TNFα stimulation alone and countermeasured the reduced CREB signaling. In vivo data of TNFα knockout mice showed that learning ability did not depend on TNFα per se but that TNFα was essential for preserving the learning ability after episodes of lipopolysaccharide-induced neuroinflammation. This may be based on modulation of CREB/CREB signaling as revealed by the in vitro / in vivo data. Our data show that several molecular targets and signaling pathways induced by TNFα in neurons resemble those seen in Alzheimer's disease pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA