Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 47(13): 3163-3166, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776576

RESUMO

We show that 13-fs laser pulses associated with 225 TW of peak power can be used to produce laser wakefield acceleration (LWFA) and generate synchrotron radiation. To achieve this, 130-TW high-power laser pulses (3.2 J, 24 fs) are efficiently compressed down to 13 fs with the thin film compression (TFC) technique using large chirped mirrors after propagation and spectral broadening through a 1-mm-thick fused silica plate. We show that the compressed 13-fs laser pulse can be properly focused even if it induces a 10% degradation of the Strehl ratio. We demonstrate the usability of such a laser beam. We observe both an increase of the electron energy and of the betatron radiation critical energy when the pulse duration is reduced to 13 fs compared with the 24-fs case.

2.
Opt Lett ; 47(14): 3612-3615, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838743

RESUMO

We demonstrate ultrashort pulse compression from 300 fs down to 17 fs at a repetition rate of 20 kHz and 160-µJ output pulse energy (3.2 W of average power) using multidimensional solitary states (MDSS) in a 1-meter hollow-core fiber (HCF) filled with N2O. Under static pressure, thermal limitations at this repetition rate annihilate the MDSS with suppression of spectral broadening. The results obtained in differential pressure configuration mitigate thermal effects and significantly increase the range of repetition rate over which MDSS can be used to compress sub-picosecond laser pulses.

3.
Opt Express ; 28(12): 17161-17170, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679929

RESUMO

We present a novel approach for measuring the carrier-envelope phase (CEP) stability of a laser source by employing the process of high harmonic generation (HHG) in solids. HHG in solids driven by few-cycle pulses is very sensitive to the waveform of the driving pulse, therefore enabling to track the shot-to-shot CEP fluctuations of a laser source. This strategy is particularly practical for pulses at long central wavelength up to the mid-infrared spectral range where usual techniques used in the visible or near-infrared regions are challenging to transpose. We experimentally demonstrate this novel tool by measuring the CEP fluctuations of a mid-infrared laser source centered at 9.5~µm.

4.
Opt Lett ; 45(8): 2267-2270, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287210

RESUMO

We present a novel, to the best of our knowledge, approach for scaling the peak power of mid-infrared laser pulses with few-cycle duration and carrier-to-envelope phase stabilization. Using frequency domain optical parametric amplification (FOPA), selective amplification is performed on two spectral slices of broadband pulses centered at 1.8 µm wavelength. In addition to amplification, the Fourier plane is used for specific pulse shaping to control both the relative polarization and the phase/delay between the two spectral slices of the input pulses. At the output of the FOPA, intrapulse difference frequency generation provides carrier-envelope phase stabilized two-cycle pulses centered at 9.5 µm wavelength with 25.5 µJ pulse energy. The control of the carrier-envelope phase is demonstrated through the dependence of high-harmonic generation in solids. This architecture is perfectly adapted to be scaled in the future to high average and high peak powers using picosecond ytterbium laser technologies.

5.
Opt Lett ; 45(11): 3013-3016, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479446

RESUMO

We demonstrate an efficient approach for enhancing the spectral broadening of long laser pulses and for efficient frequency redshifting by exploiting the intrinsic temporal properties of molecular alignment inside a gas-filled hollow-core fiber (HCF). We find that laser-induced alignment with durations comparable to the characteristic rotational time scale TRotAlign enhances the efficiency of redshifted spectral broadening compared to noble gases. The applicability of this approach to Yb lasers with (few hundred femtoseconds) long pulse duration is illustrated, for which efficient broadening based on conventional Kerr nonlinearity is challenging to achieve. Furthermore, this approach proposes a practical solution for high energy broadband long-wavelength light sources, and it is attractive for many strong field applications.

6.
Opt Express ; 27(20): 28998-29015, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684642

RESUMO

In this paper, we introduce a pulse characterization technique that is free of phase-matching constraints, exploiting transient absorption in solids as an ultrafast optical switch. Based on a pump-probe setup, this technique uses pump pulses of sufficient intensity to induce the switch, while the pulses to characterize are probing the transmissivity drop of the photoexcited material. This enables the characterization of low-intensity ultra-broadband pulses at the detection limit of the spectrometer and within the transparency range of the solid. For example, by using zinc selenide (ZnSe), pulses with wavelengths from 0.5 to 20 µm can be characterized, denoting five octaves of spectral range. Using ptychography, we retrieve the temporal profiles of both the probe pulse and the switch. To demonstrate this approach, we measure ultrashort pulses from a titanium-sapphire (Ti-Sa) amplifier, which are compressed using a hollow core fiber setup, as well as infrared to mid-infrared pulses generated from an optical parametric amplifier (OPA). The characterized pulses are centered at wavelengths of 0.77, 1.53, 1.75, 4, and 10 µm, down to sub-two optical cycles duration, exceeding an octave of bandwidth, and with energy as low as a few nanojoules.

7.
Opt Express ; 25(22): 27706-27714, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092241

RESUMO

Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 µm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

8.
Opt Express ; 24(21): 24225-24231, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828252

RESUMO

Generating mid infrared (MIR) pulses by difference frequency generation (DFG) is often a trade-off between the maximum stability given by all-inline intra-pulse arrangements and the independent control of pulse parameters with inter-pulse pump-probe like scenarios. We propose a coalescence between both opposing approaches by realizing an all-inline inter-pulse DFG scheme employing a 4-f setup. This allows independent manipulation of the amplitude, delay and polarization of the two corresponding spectral side bands of a supercontinuum source while maintaining 20 attoseconds jitter without any feedback stabilization. After filamentation in air, the broadened Ti:Sa spectrum is tailored in a 4-f setup to generate tunable MIR pulses. In this manner, 2 µm, 4.8 µJ, 26.5 fs and carrier-envelope-phase (CEP) stabilized pulses are generated in a single DFG stage.

9.
Opt Express ; 19(15): 14093-8, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21934771

RESUMO

We demonstrated the generation of infrared radiation by filamentation of a spectrally shaped femtosecond laser beam. The spectrum is divided in two distinctive parts using an acousto-optic programmable dispersive filter (AOPDF) as a pulse shaper, resulting in two pulses of different colors. One pulse is frequency doubled and the beams are then focused to produce an optical filament. Efficient infrared generation occurred in the filament zone through the four-wave mixing interaction. This in-line setup allowed perfect spatial overlap of the pulses, fine control of the relative delay and the remote control of the infrared spectral distribution through spectral shaping of the initial femtosecond laser beam via the AOPDF.

10.
Opt Express ; 19(9): 8486-97, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21643098

RESUMO

Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results.


Assuntos
Lasers , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Opt Express ; 19(1): 230-40, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21263561

RESUMO

We report measurements of crater diameter and surface ablation threshold as a function of laser fluence in porcine corneal stroma and fused silica with pulse durations of 7 fs (2.7 optical cycles), 30 fs and 100 fs at 800 nm. For laser pulses with Gaussian radial intensity profile, we show experimentally that the square of the crater diameter is a linear function of the logarithm of the fluence in fused silica, while it is closer to a linear function of the fluence in corneal stroma. Extrapolating these relations to zero diameter indicates that for both media the minimum fluence required for surface ablation is reduced with shorter pulse duration. A simple theoretical model suggests that this effect is due to a more significant contribution of photoionization as the laser pulse duration shortens.


Assuntos
Córnea/cirurgia , Cirurgia da Córnea a Laser/métodos , Animais , Cirurgia da Córnea a Laser/instrumentação , Desenho de Equipamento , Técnicas In Vitro , Modelos Teóricos , Dispositivos Ópticos , Fenômenos Ópticos , Dióxido de Silício , Suínos
12.
Opt Lett ; 36(13): 2426-8, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21725433

RESUMO

Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high-quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 µm and produces a synchrotron spectrum with critical energy E(c)=12.3±2.5 keV and 109 photons per shot in the whole spectrum.


Assuntos
Lasers , Imagem Molecular/métodos , Animais , Abelhas , Calibragem , Estudos de Viabilidade , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA