Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 261: 114109, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32109818

RESUMO

Dichlorvos is a common crop insecticide widely used by people which causes extensive and serious environmental pollution. However, it has been shown that organophosphorus poisoning causes energy metabolism and neural disorders. The overall purpose of this study was to investigate the damage to brain tissue and the changes in AMPK signaling pathway-related gene expression after dichlorvos poisoning in chickens. White-feathered broiler chickens, as the research subjects of this experiment, were divided into three groups: control group, low-dose group (77.5% dichlorvos at 1.13 mg/kg dose) and high-dose group (77.5% dichlorvos at 10.2 mg/kg dose). Clinical symptoms were observed after modeling, and an integrative analysis was conducted using HE staining microscopy, immune-histochemical microscopy, electron microscopy and PCR arrays. The results showed that the high-dose group had more obvious dyspnea, salivation, convulsion and other neurological phenomena. Pathological sections showed that nuclear disintegration of neurons was most obvious in the low-dose group, and apoptosis of brain cells was most obvious in the high-dose group, and the mitochondrial structure was destroyed in the two poisoned group, i.e. low-dose group and high-dose group. PCR arrays showed that AMPK signaling pathway was inhibited and the expressions of genes involved in energy metabolism (ACACA and PRKAA1) were significantly changed. Furthermore, genes associated with protein synthesis (EIF4EBP1) were significantly upregulated. FASN and HMGCR expressions were significantly increased. There were significant changes in the expressions of cell cycle-related genes (STK11, TP53 and FOXO3). Organophosphate poisoning can cause a lot of nuclear disintegration of brain neurons, increases cell apoptosis, disrupts the energy metabolism of mitochondrial structure, and inhibits the AMPK signaling pathway. These results provide a certain idea and basis for studying the mechanism of AMPK signaling after organophosphorus poisoning and provide a research basis for the prevention and treatment of organophosphorus poisoning.


Assuntos
Galinhas , Diclorvós , Proteínas Quinases Ativadas por AMP , Animais , Encéfalo , Transdução de Sinais
2.
Sci Total Environ ; 721: 137639, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172103

RESUMO

Mercury is a key global pollutant, yet the mechanism by which mercury-exposure causes intestinal injury is not clear, we aimed to investigate the mechanism of intestinal injury and gut microbiota changes caused by mercury-exposure. Twelve Kunming mice were divided into two groups (n = 6), and the two groups were treated with 0 mg/L and 80 mg/L HgCl2 in drinking water for 90 days respectively. Our results showed that mercury-exposure prominently effected body weight gain and glucose levels. The mercury-exposed mice showed intestinal injury, which was diagnosed by Histopathological Examination and Transmission Electron Microscopy. Meanwhile, RT-PCR indicated that mercury-exposure significantly increased the expression of pro-apoptotic genes including Bax, JNK, ASK1, caspase3 and TNF-α, and significantly decreased the expression of the anti-apoptotic gene Bcl-2. Furthermore, high-throughput sequencing analysis showed that at the genus level some microbial populations including Coprococcus, Oscillospira and Helicobacter were significantly increased whereas some microbial populations including Lgnatzschineria, Salinicoccus and Bacillus were significantly decreased. Moreover, PICRUSt analysis revealed potential metabolic changes. Correlation analysis indicated that microorganisms were significantly correlated with apoptotic gene expression. In summary, our results indicated that mercury-exposure affected the growth and development of mice, induced intestinal microbiota dysbiosis and metabolic disorder, and aggravated apoptosis in mice.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Mercúrio , Microbiota , Animais , Disbiose , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA