Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Am Chem Soc ; 145(16): 9129-9135, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37053567

RESUMO

Although alcohols are readily oxidized by a variety of oxidants, their oxidation by metal nitrido complexes is yet to be studied. We report herein visible-light-induced oxidation of primary and secondary alcohols to carbonyl compounds by a strongly luminescent osmium(VI) nitrido complex (OsN). The proposed mechanism involves initial rate-limiting hydrogen-atom transfer (HAT) from the α-carbon of the alcohol to OsN*. Attempts to develop catalytic oxidation of alcohols by OsN* using PhIO as the terminal oxidant resulted in the formation of novel osmium(IV) iminato complexes in which the nitrido ligand is bonded to a δ-carbon of the alcohol. Experimental and theoretical studies suggest that OsN* is reductively quenched by PhIO to generate PhIO+, which is a highly active oxidant that readily undergoes α- and δ-C-H activation of alcohols.

2.
J Am Chem Soc ; 145(46): 25195-25202, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947126

RESUMO

Visible-light-driven reduction of CO2 to both CO and formate (HCOO-) was achieved in acetonitrile solutions using a homobimetallic Cu bisquaterpyridine complex. In the presence of a weak acid (water) as coreactant, the reaction rate was enhanced, and a total of ca. 766 TON (turnover number) was reached for the CO2 reduction, with 60% selectivity for formate and 28% selectivity for CO, using Ru(phen)32+ as a sensitizer and amines as sacrificial electron donors. Mechanistic studies revealed that with the help of cooperativity between two Cu centers, a bridging hydride is generated in the presence of a proton source (water) and further reacts with CO2 to give HCOO-. A second product, CO, was also produced in a parallel competitive pathway upon direct coordination of CO2 to the reduced complex. Mechanistic studies further allowed comparison of the observed reactivity to the monometallic Cu quaterpyridine complex, which only produced CO, and to the related homobimetallic Co bisquaterpyridine complex, that has been previously shown to generate formate following a mechanism not involving the formation of an intermediate hydride species.

3.
Inorg Chem ; 62(20): 7772-7778, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37146252

RESUMO

Seven-coordinate (CN7) ruthenium-oxo species have attracted much attention as highly reactive intermediates in both organic and water oxidation. Apart from metal-oxo, other metal-oxidant adducts, such as metal-iodosylarenes, have also recently emerged as active oxidants. We reported herein the first example of a CN7 Ru-iodosylbenzene complex, [RuIV(bdpm)(pic)2(O)I(Cl)Ph]+ (H2bdpm = [2,2'-bipyridine]-6,6'-diylbis(diphenylmethanol); pic = 4-picoline). The X-ray crystal structure of this complex shows that it adopts a distorted pentagonal bipyramidal geometry with Ru-O(I) and O-I distances of 2.0451(39) and 1.9946(40) Å, respectively. This complex is highly reactive, and it readily undergoes O-atom transfer (OAT) and C-H bond activation reactions with various organic substrates. This work should provide insights for the development of new highly reactive oxidizing agents based on CN7 geometry.

4.
Phys Chem Chem Phys ; 25(25): 16921-16929, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37325896

RESUMO

We propose a theoretical procedure for accurate determination of reduction potentials for three metallocene couples, Cp2M+/Cp2M, where M = Fe, Co and Ni. This procedure first computes the gas phase ionization energy (IE) using the explicitly correlated CCSD(T)-F12 method and includes the zero-point energy correction, core-valence electronic correlation, and relativistic and spin-orbit coupling effects. By means of Born-Haber thermochemical cycle, the one-electron reduction potential is obtained as the sum of the gas phase IE and the corresponding Gibbs free energies of solvation (ΔGsolv) for both the neutral and cationic species. Among the three solvent models (PCM, SMD and uESE) investigated here, it turns out that only the SMD model (computed at the DFT level) gives the best estimation of the value for "ΔGsolv(cation) - ΔGsolv(neutral)" and thus, combining with the accurate IE values, the theoretical protocol is capable of yielding reliable values (in V) for , and . These predictions compare favorably with the available experimental data (in V): , , and . We show that our theoretical procedure is reliable for accurate reduction potential predictions of Cp2Fe+/Cp2Fe, Cp2Co+/Cp2Co and Cp2Ni+/Cp2Ni redox couples in aqueous and non-aqueous media; the maximum absolute deviation is as small as ≈120 mV, which outperforms those of the existing theoretical methods.

5.
J Am Chem Soc ; 144(17): 7588-7593, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442033

RESUMO

As a strategy to design stable but highly reactive metal nitrido species, we have synthesized a manganese(V) nitrido complex bearing a bulky corrole ligand, [MnV(N)(TTPPC)]- (1, TTPPC is the trianion of 5,10,15-Tris(2,4,6-triphenylphenyl)corrole). Complex 1 is readily oxidized by 1 equiv of Cp2Fe+ to give the neutral complex 2, which can be further oxidized by 1 equiv of [(p-Br-C6H4)3N•+][B(C6F5)4] to afford the cationic complex 3. All three complexes are stable in the solid state and in CH2Cl2 solution, and their molecular structures have been determined by X-ray crystallography. Spectroscopic and theoretical studies indicate that complexes 2 and 3 are best formulated as Mn(V) nitrido π-cation corrole [MnV(N)(TTPPC+•)] and Mn(V) nitrido π-dication corrole [MnV(N)(TTPPC2+)]+, respectively. Complex 3 is the most reactive N atom transfer reagent among isolated nitrido complexes; it reacts with PPh3 and styrene with second-order rate constants of 2.12 × 105 and 1.95 × 10-2 M-1 s-1, respectively, which are >107 faster than that of 2.


Assuntos
Manganês , Porfirinas , Elétrons , Íons , Ligantes , Manganês/química , Porfirinas/química
6.
J Am Chem Soc ; 143(38): 15863-15872, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34498856

RESUMO

Manganese complexes in +6 oxidation state are rare. Although a number of Mn(VI) nitrido complexes have been generated in solution via one-electron oxidation of the corresponding Mn(V) nitrido species, they are too unstable to isolate. Herein we report the isolation and the X-ray structure of a Mn(VI) nitrido complex, [MnVI(N)(TAML)]- (2), which was obtained by one-electron oxidation of [MnV(N)(TAML)]2- (1). 2 undergoes N atom transfer to PPh3 and styrenes to give Ph3P═NH and aziridines, respectively. A Hammett study for various p-substituted styrenes gives a V-shaped plot; this is rationalized by the ability of 2 to function as either an electrophile or a nucleophile. 2 also undergoes hydride transfer reactions with NADH analogues, such as 10-methyl-9,10-dihydroacridine (AcrH2) and 1-benzyl-1,4-dihydronicotinamide (BNAH). A kinetic isotope effect of 7.3 was obtained when kinetic studies were carried out with AcrH2 and AcrD2. The reaction of 2 with NADH analogues results in the formation of [MnV(N)(TAML-H+)]- (3), which was characterized by ESI/MS, IR spectroscopy, and X-ray crystallography. These results indicate that this reaction occurs via an initial "separated CPET" (separated concerted proton-electron transfer) mechanism; that is, there is a concerted transfer of 1 e- + 1 H+ from AcrH2 (or BNAH) to 2, in which the electron is transferred to the MnVI center, while the proton is transferred to a carbonyl oxygen of TAML rather than to the nitrido ligand.

7.
J Phys Chem A ; 125(24): 5385-5396, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34121392

RESUMO

We present a composite procedure based on explicitly correlated CCSD(T)-F12 calculations for accurate energetic predictions for carbon chain molecules HCnH encompassing both the even (HC2kH) and odd series (HC2k-1H), with the shorter members playing a key role in the evolution of cosmic carbon compounds in both circumstellar envelopes and interstellar medium. This approach considers the contributions of core-valence correlation, scalar relativistic effect, spin-orbit coupling, and zero-point vibrational energy in an additive manner. The computed ionization energies demonstrate outstanding agreement (±0.07 eV) up to a chain size of k = 6 and the literature heats of formation for k ≤ 2 are reproduced with "chemical accuracy" of 1 kcal mol-1. Among the various corrections included, the importance of core-valence correlation effect has been highlighted in the thermochemical calculations for carbon chain growth. The thermochemical trend toward infinite length is also highlighted by extrapolation of ionization energy and triplet-singlet splitting at the CCSD(T) level for k up to 15. The correlation between the end-group effect and the even-odd parity effect observed for HCnH chains has been established with the aid of intrinsic bond orbital localization.

8.
J Phys Chem A ; 125(23): 4957-4966, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34076442

RESUMO

The ionization energies of VCH2 and VCH3, the various 0 K bond dissociation energies (D0s) in their neutrals and cations, and their respective heats of formation at 0 and 298 K are computed by the single-reference, wave function-based CCSDTQ/CBS procedure. The core of the composite method is the approximation to the complete basis set (CBS) limit at the coupled cluster (CC) level which includes up to full quadruple excitations. The zero-point vibrational energy, core-valence correlation, spin-orbit coupling, and scalar relativistic effects have their contributions incorporated in an additive manner. For the species in the current study, this protocol requires geometry optimizations and harmonic frequency calculations practically no higher than the CCSD(T)/aug-cc-pwCVTZ and CCSD(T)/aug-cc-pVTZ levels, respectively. The present calculations successfully predict D0(V+-CH3) = 2.126 eV and D0(V+-CH2) = 3.298 eV in remarkable agreement with the data recently measured by a spin-orbit state selected V+ + CH4 collision experiment (Phys. Chem. Chem. Phys. 2021, 23, 273-286). The good accord encourages the use of CCSDTQ/CBS protocol in thermochemical predictions of various feasible product channels identified in methane activation by transition metal species.

10.
J Phys Chem A ; 123(34): 7454-7462, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31414807

RESUMO

The ionization energy (IE) of VCH, the 0 K V-CH/VC-H bond dissociation energies (D0s), and the heats of formation at 0 K (ΔHf0°) and 298 K (ΔHf298°) for VCH/VCH+ are predicted by the wave function-based CCSDTQ/CBS approach. This composite-coupled cluster method includes full quadruple excitations in conjunction with the approximation to the complete basis set (CBS) limit. The contributions of zero-point vibrational energy, core-valence (CV) correlation, spin-orbit coupling, and scalar relativistic corrections are taken into account. The present calculations show that adiabatic IE(VCH) = 6.785 eV and demonstrate excellent agreement with an IE value of 6.774 7 ± 0.000 1 eV measured with two-color laser-pulsed field ionization-photoelectron spectroscopy. The CCSDT and MRCI+Q methods which include CV correlations give the best predictions of harmonic frequencies: ω2 (ω2+) (bending) = 534 (650) and 564 (641) cm-1 and the V-CH stretching ω3 (ω3+) = 835 (827) and 856 (857) cm-1 compared with the experimental values. In this work, we offer a streamlined CCSDTQ/CBS approach which shows an error limit (≤20 meV) matching with previous benchmarking efforts for reliable IE and D0 predictions for VCH/VCH+. The CCSDTQ/CBS D0(V+-CH) - D0(V-CH) = -0.012 eV and D0(VC+-H) - D0(VC-H) = 0.345 eV are in good accord with the experimentally derived values of -0.028 4 ± 0.000 1 and 0.355 9 ± 0.000 1 eV, respectively. The present study has demonstrated that the CCSDTQ/CBS protocol can be readily extended to investigate triatomic molecules containing 3d-metals.

11.
Chemistry ; 24(70): 18735-18742, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30259584

RESUMO

The kinetics of water oxidation by K2 FeO4 has been reinvestigated by UV/Vis spectrophotometry from pH 7-9 in 0.2 m phosphate buffer. The rate of reaction was found to be second-order in both [FeO4 2- ] and [H+ ]. These results are consistent with a proposed mechanism in which the first step involves the initial equilibrium protonation of FeO4 2- to give FeO3 (OH)- , which then undergoes rate-limiting O-O bond formation. Analysis of the O2 isotopic composition for the reaction in H2 18 O suggests that the predominant pathway for water oxidation by ferrate is intramolecular O-O coupling. DFT calculations have also been performed, which support the proposed mechanism.

12.
Phys Chem Chem Phys ; 20(44): 27725-27729, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30383056

RESUMO

We report the formation of H2+ and C2+ from dissociation of acetylene induced by α-particle irradiation. The unusual dissociation channel [C2H2]2+ → H2+ + C2+ is unambiguously identified by measuring the time-of-flight of both fragmented ions in coincidence. Our quantum chemical calculation confirms the existence of this dissociation pathway. It shows that [HCCH]2+ is firstly populated to the 3Π excited electronic state, followed by acetylene-vinylidene isomerization, and finally the vinylidene-like intermediate dissociates to H2+ and C2+. This dissociation channel is the simplest prototypical reaction involving H migration, H-H combination, and C-H bond cleavage. The current study plays an important role for understanding the H2+/H3+ formation reactions from organic di-cations in an interstellar medium.

13.
Phys Chem Chem Phys ; 20(32): 20756-20765, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29989120

RESUMO

Adenine, a DNA base, exists as several tautomers and isomers that are closely lying in energy and that may form a mixture upon vaporization of solid adenine. Indeed, it is challenging to bring adenine into the gas phase, especially as a unique tautomer. The experimental conditions were tuned to prepare a jet-cooled canonical adenine (9H-adenine). This isolated DNA base was ionized by single VUV photons from a synchrotron beamline and the corresponding slow photoelectron spectrum was compared to ab initio computations of the neutral and ionic species. We report the vibronic structure of the X+ 2A'' (D0), A+ 2A' (D1) and B+ 2A'' (D2) electronic states of the 9H adenine cation, from the adiabatic ionization energy (AIE) up to AIE + 1.8 eV. Accurate AIEs are derived for the 9H-adenine (X[combining tilde] 1A') + hν → 9H-adenine+ (X+ 2A'', A+ 2A', B+ 2A'') + e- transitions. Close to the AIE, we fully assign the rich vibronic structure solely to the 9H-adenine (X 1A') + hν → 9H-adenine+ (X+ 2A'') transition. Importantly, we show that the lowest cationic electronic states of canonical adenine are coupled vibronically. The present findings are important for understanding the effects of ionizing radiation and the charge distribution on this elementary building block of life, at ultrafast, short, and long timescales.


Assuntos
Adenina/química , Cátions , Isomerismo , Cinética , Modelos Moleculares , Estrutura Molecular , Transição de Fase , Processos Fotoquímicos , Fenômenos Físicos , Teoria Quântica , Termodinâmica
14.
Inorg Chem ; 56(21): 12699-12702, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29027799

RESUMO

We have previously reported that the oxidation of SO32- to SO42- by a trans-dioxoruthenium(VI) complex, [RuVI(TMC)(O)2)]2+ (RuVI; TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazcyclotetradecane) in aqueous solutions occurs via an O-atom transfer mechanism. In this work, we have reinvestigated the effects of the pH on the oxidation of SIV by RuVI in more detail in order to obtain kinetic data for the HSO3- pathway. The HSO3- pathway exhibits a deuterium isotope effect of 17.4, which indicates that O-H bond breaking occurs in the rate-limiting step. Density functional theory calculations have been performed that suggest that the oxidation of HSO3- by RuVI may occur via a concerted or stepwise proton-coupled O-atom transfer mechanism.

15.
Phys Chem Chem Phys ; 19(15): 9778-9789, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28352920

RESUMO

We report detailed absolute integral cross sections (σ's) for the quantum-rovibrational-state-selected ion-molecule reaction in the center-of-mass collision energy (Ecm) range of 0.05-10.00 eV, where (vvv) = (000), (100), and (020), and . Three product channels, HCO+ + OH, HOCO+ + H, and CO+ + H2O, are identified. The measured σ(HCO+) curve [σ(HCO+) versus Ecm plot] supports the hypothesis that the formation of the HCO+ + OH channel follows an exothermic pathway with no potential energy barriers. Although the HOCO+ + H channel is the most exothermic, the σ(HOCO+) is found to be significantly lower than the σ(HCO+). The σ(HOCO+) curve is bimodal, indicating two distinct mechanisms for the formation of HOCO+. The σ(HOCO+) is strongly inhibited at Ecm < 0.4 eV, but is enhanced at Ecm > 0.4 eV by (100) vibrational excitation. The Ecm onsets of σ(CO+) determined for the (000) and (100) vibrational states are in excellent agreement with the known thermochemical thresholds. This observation, along with the comparison of the σ(CO+) curves for the (100) and (000) states, shows that kinetic and vibrational energies are equally effective in promoting the CO+ channel. We have also performed high-level ab initio quantum calculations on the potential energy surface, intermediates, and transition state structures for the titled reaction. The calculations reveal potential barriers of ≈0.5-0.6 eV for the formation of HOCO+, and thus account for the low σ(HOCO+) and its bimodal profile observed. The Ecm enhancement for σ(HOCO+) at Ecm ≈ 0.5-5.0 eV can be attributed to the direct collision mechanism, whereas the formation of HOCO+ at low Ecm < 0.4 eV may involve a complex mechanism, which is mediated by the formation of a loosely sticking complex between HCO+ and OH. The direct collision and complex mechanisms proposed also allow the rationalization of the vibrational inhibition at low Ecm and the vibrational enhancement at high Ecm observed for the σ(HOCO+).

16.
J Phys Chem A ; 121(3): 669-679, 2017 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-28075604

RESUMO

The ionization energies (IEs) of TiO and TiO2 and the 0 K bond dissociation energies (D0) and the heats of formation at 0 K (ΔH°f0) and 298 K (ΔH°f298) for TiO/TiO+ and TiO2/TiO2+ are predicted by the wave-function-based CCSDTQ/CBS approach. The CCSDTQ/CBS calculations involve the approximation to the complete basis set (CBS) limit at the coupled cluster level up to full quadruple excitations along with the zero-point vibrational energy (ZPVE), high-order correlation (HOC), core-valence (CV) electronic, spin-orbit (SO) coupling, and scalar relativistic (SR) effect corrections. The present calculations yield IE(TiO) = 6.815 eV and are in good agreement with the experimental IE value of 6.819 80 ± 0.000 10 eV determined in a two-color laser-pulsed field ionization-photoelectron (PFI-PE) study. The CCSDT and MRCI+Q methods give the best predictions to the harmonic frequencies: ωe (ωe+) = 1013 (1069) and 1027 (1059) cm-1 and the bond lengths re (re+) = 1.625 (1.587) and 1.621 (1.588) Å, for TiO (TiO+) compared with the experimental values. Two nearly degenerate, stable structures are found for TiO2 cation: TiO2+(C2v) structure has two equivalent TiO bonds, while the TiO2+(Cs) structure features a long and a short TiO bond. The IEs for the TiO2+(C2v)←TiO2 and TiO2+(Cs)←TiO2 ionization transitions are calculated to be 9.515 and 9.525 eV, respectively, giving the theoretical adiabatic IE value in good agreement with the experiment IE(TiO2) = 9.573 55 ± 0.000 15 eV obtained in the previous vacuum ultraviolet (VUV)-PFI-PE study of TiO2. The potential energy surface of TiO2+ along the normal vibrational coordinates of asymmetric stretching mode (ω3+) is nearly flat and exhibits a double-well potential with the well of TiO2+ (Cs) situated around the central well of TiO2+(C2v). This makes the theoretical calculation of ω3+ infeasible. For the symmetric stretching (ω1+), the current theoretical predictions overestimate the experimental value of 829.1 ± 2.0 cm-1 by more than 100 cm-1. This work together with the previous experimental and theoretical investigations supports the conclusion that the CCSDTQ/CBS approach is capable of providing reliable IE and D0 predictions for TiO/TiO+ and TiO2/TiO2+ with error limits less than or equal to 60 meV. The CCSDTQ/CBS calculations give the predictions of D0(Ti+-O) - D0(Ti-O) = 0.004 eV and D0(O-TiO) - D0(O-TiO+) = 2.699 eV, which are also consistent with the respective experimental determination of 0.008 32 ± 0.000 10 and 2.753 75 ± 0.000 18 eV.

17.
Angew Chem Int Ed Engl ; 56(40): 12260-12263, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28734083

RESUMO

The OsVI nitrido complex, OsVI (N)(quin)2 (OTs) (1, quin=2-quinaldinate, OTs=tosylate), is a highly selective and efficient catalyst for the ring hydroxylation of alkylbenzenes with H2 O2 at room temperature. Oxidation of various alkylbenzenes occurs with ring/chain oxidation ratios ranging from 96.7/3.3 to 99.9/0.1, and total product yields from 93 % to 98 %. Moreover, turnover numbers up to 6360, 5670, and 3880 can be achieved for the oxidation of p-xylene, ethylbenzene, and mesitylene, respectively. Density functional theory calculations suggest that the active intermediate is an OsVIII nitrido oxo species.

18.
J Am Chem Soc ; 138(51): 16596-16599, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27992194

RESUMO

Biological entities, such as DNA bases or proteins, possess numerous tautomers and isomers that lie close in energy, making the experimental characterization of a unique tautomer challenging. We apply VUV synchrotron-based experiments combined with state-of-the-art ab initio methodology to determine the adiabatic ionization energies (AIEs) of specific gas-phase cytosine tautomers produced in a molecular beam. The structures and energetics of neutral and cationic cytosine tautomers were determined using explicitly correlated methods. The experimental spectra correspond to well-resolved bands that are attributable to the specific contributions of five neutral tautomers of cytosine prior to ionization. Their AIEs are experimentally determined for the first time with an accuracy of 0.003 eV. This study also serves as an important showcase for other biological entities presenting a dense pattern of isomeric and tautomeric forms in their spectra that can be investigated to understand the charge redistribution in these species upon ionization.


Assuntos
Citosina/química , Fótons , Isomerismo , Processos Fotoquímicos
19.
Chemistry ; 22(33): 11537-42, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27123884

RESUMO

The use of light to control the course of a chemical/biochemical reaction is an attractive idea because of its ease of administration with high precision and fine spatial resolution. Staudinger ligation is one of the commonly adopted conjugation processes that involve a spontaneous reaction between azides and arylphosphines to form iminophosphoranes, which further hydrolyze to give stable amides. We designed an anthracenylmethyl diphenylphosphinothioester (1) that showed promising Staudinger ligation reactivity upon photo-excitation. Broadband photolysis at 360-400 nm in aqueous organic solvents induced heterolytic cleavage of its anthracenylmethyl-phosphorus bond, releasing a diphenylphosphinothioester (2) as an efficient traceless Staudinger-Bertozzi ligation reagent. The quantum yield of such a photo-induced heterolytic bond-cleavage at the optimal wavelength of photolysis (376 nm) at room temperature is ≥0.07. This work demonstrated the feasibility of photocaging arylphosphines to realize the photo-triggering of the Staudinger ligation reaction.

20.
Chemistry ; 22(31): 10754-8, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27246832

RESUMO

The kinetics and mechanism of the reaction of S(IV) (SO3 (2-) +HSO3 (-) ) with a ruthenium(VI) nitrido complex, [(L)Ru(VI) (N)(OH2 )](+) (Ru(VI) N, L=N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion), in aqueous acidic solutions are reported. The kinetic results are consistent with parallel pathways involving oxidation of HSO3 (-) and SO3 (2-) by Ru(VI) N. A deuterium isotope effect of 4.7 is observed in the HSO3 (-) pathway. Based on experimental results and DFT calculations the proposed mechanism involves concerted N-S bond formation (partial N-atom transfer) between Ru(VI) N and HSO3 (-) and H(+) transfer from HSO3 (-) to a H2 O molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA