Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 405(8): 2595-606, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23318763

RESUMO

In recent years, there has been an ongoing focus for both human and equine doping control laboratories on developing detection methods to control the misuse of peptide therapeutics. Immunoaffinity purification is a common extraction method to isolate peptides from biological matrices and obtain sufficient detectability in subsequent instrumental analysis. However, monoclonal or polyclonal antibodies for immunoaffinity purification may not be commercially available, and even if available, such antibodies are usually very costly. In our study, a simple mixed-mode anion exchange solid-phase extraction cartridge was employed for the extraction of seven target peptides (GHRP-1, GHRP-2, GHRP-6, ipamorelin, hexarelin, CJC-1295, and N-acetylated LKKTETQ (active ingredient of TB-500)) and their in vitro metabolites from horse plasma. The final extract was subject to ultra-high-performance liquid chromatographic separation and analysed with a hybrid high-resolution mass spectrometer. The limits of detection for all seven peptides were estimated to be less than 50 pg/mL. Method validation was performed with respect to specificity, precision, and recovery. The applicability of this multi-analyte method was demonstrated by the detection of N-acetylated LKKTETQ and its metabolite N-acetylated LK from plasma samples obtained after subcutaneous administration of TB-500 (10 mg N-acetylated LKKTETQ) to two thoroughbred geldings. This method could easily be modified to cover more bioactive peptides, such as dermorphin, ß-casomorphin, and desmopressin. With the use of high-resolution mass spectrometry, the full-scan data acquired can also be re-processed retrospectively to search for peptides and their metabolites that have not been targeted at the time of analysis. To our knowledge, this is the first identification of in vitro metabolites of all the studied peptides other than TB-500 in horses.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Dopagem Esportivo , Cavalos/sangue , Espectrometria de Massas/métodos , Peptídeos/sangue , Detecção do Abuso de Substâncias/veterinária , Animais , Dopagem Esportivo/prevenção & controle , Peptídeos/isolamento & purificação , Extração em Fase Sólida , Detecção do Abuso de Substâncias/métodos
2.
Drug Test Anal ; 12(9): 1274-1286, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32558326

RESUMO

The use of bioactive peptides as a doping agent in both human and animal sports has become increasingly popular in recent years. As such, methods to control the misuse of bioactive peptides in equine sports have received attention. This paper describes a sensitive accurate mass method for the detection of 40 bioactive peptides and two non-peptide growth hormone secretagogues (< 2 kDa) at low pg/mL levels in horse urine using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC/HRMS). A simple mixed-mode cation exchange solid-phase extraction (SPE) cartridge was employed for the extraction of 42 targets and/or their in vitro metabolites from horse urine. The final extract was analyzed using UHPLC/HRMS in positive electrospray ionization (ESI) mode under both full scan and data independent acquisition (DIA, for MS2 ). The estimated limits of detection (LoD) for most of the targets could reach down to 10 pg/mL in horse urine. This method was validated for qualitative detection purposes. The validation data, including method specificity, method sensitivity, extraction recovery, method precision, and matrix effect were reported. A thorough in vitro study was also performed on four gonadotrophin-releasing factors (GnRHs), namely leuprorelin, buserelin, goserelin, and nafarelin, using the S9 fraction isolated from horse liver. The identified in vitro metabolites have been incorporated into the method for controlling the misuse of GnRHs. The applicability of this method was demonstrated by the identification of leuprorelin and one of its metabolites, Leu M4, in urine obtained after intramuscular administration of leuprorelin to a thoroughbred gelding (castrated horse).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Detecção do Abuso de Substâncias/métodos , Animais , Dopagem Esportivo , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/urina , Cavalos , Humanos , Leuprolida/análise , Leuprolida/urina , Limite de Detecção , Masculino , Peptídeos/urina , Reprodutibilidade dos Testes , Extração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA