Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 43(10): e2100103, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426986

RESUMO

The systems view on life and its emergence from complex chemistry has remarkably increased the scientific attention on metabolism in the last two decades. However, during this time there has not been much theoretical discussion on what constitutes a metabolism and what role it actually played in biogenesis. A critical and updated review on the topic is here offered, including some references to classical models from last century, but focusing more on current and future research. Metabolism is considered as intrinsically related to the living but not necessarily equivalent to it. More precisely, the idea of "minimal metabolism", in contrast to previous, top-down conceptions, is formulated as a heuristic construct, halfway between chemistry and biology. Thus, rather than providing a complete or final characterization of metabolism, our aim is to encourage further investigations on it, particularly in the context of life's origin, for which some concrete methodological suggestions are provided. Also see the video abstract here: https://youtu.be/DP7VMKk2qpA.


Assuntos
Metabolismo/fisiologia
2.
Phys Rev E ; 108(4-1): 044410, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978605

RESUMO

Chemical reactions are usually studied under the assumption that both substrates and catalysts are well-mixed (WM) throughout the system. Although this is often applicable to test-tube experimental conditions, it is not realistic in cellular environments, where biomolecules can undergo liquid-liquid phase separation (LLPS) and form condensates, leading to important functional outcomes, including the modulation of catalytic action. Similar processes may also play a role in protocellular systems, like primitive coacervates, or in membrane-assisted prebiotic pathways. Here we explore whether the demixing of catalysts could lead to the formation of microenvironments that influence the kinetics of a linear (multistep) reaction pathway, as compared to a WM system. We implemented a general lattice model to simulate LLPS of a collection of different catalysts and extended it to include diffusion and a sequence of reactions of small substrates. We carried out a quantitative analysis of how the phase separation of the catalysts affects reaction times depending on the affinity between substrates and catalysts, the length of the reaction pathway, the system size, and the degree of homogeneity of the condensate. A key aspect underlying the differences reported between the two scenarios is that the scale invariance observed in the WM system is broken by condensation processes. The main theoretical implications of our results for mean-field chemistry are drawn, extending the mass action kinetics scheme to include substrate initial "hitting times" to reach the catalysts condensate. We finally test this approach by considering open nonlinear conditions, where we successfully predict, through microscopic simulations, that phase separation inhibits chemical oscillatory behavior, providing a possible explanation for the marginal role that this complex dynamic behavior plays in real metabolisms.

3.
iScience ; 26(4): 106300, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36994084

RESUMO

Physical mechanisms of phase separation in living systems play key physiological roles and have recently been the focus of intensive studies. The strongly heterogeneous nature of such phenomena poses difficult modeling challenges that require going beyond mean-field approaches based on postulating a free energy landscape. The pathway we take here is to calculate the partition function starting from microscopic interactions by means of cavity methods, based on a tree approximation for the interaction graph. We illustrate them on the binary case and then apply them successfully to ternary systems, in which simpler one-factor approximations are proved inadequate. We demonstrate the agreement with lattice simulations and contrast our theory with coacervation experiments of associative de-mixing of nucleotides and poly-lysine. Different types of evidence are provided to support cavity methods as ideal tools for modeling biomolecular condensation, giving an optimal balance between the consideration of spatial aspects and fast computational results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA