Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(1): 124-132, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239779

RESUMO

Protein zero (P0) is the major structural protein in peripheral myelin, and mutations in the Myelin Protein Zero (Mpz) gene produce wide-ranging hereditary neuropathy phenotypes. To gain insight in the mechanisms underlying a particularly severe form, congenital hypomyelination (CH), we targeted mouse Mpz to encode P0Q215X, a nonsense mutation associated with the disease, that we show escapes nonsense mediated decay and is expressed in CH patient nerves. The knock-in mice express low levels of the resulting truncated protein, producing a milder phenotype when compared to patients, allowing to dissect the subtle pathogenic mechanisms occurring in otherwise very compromised peripheral myelin. We find that P0Q215X does not elicit an unfolded protein response, which is a key mechanism for other pathogenic MPZ mutations, but is instead in part aberrantly trafficked to non-myelin plasma membranes and induces defects in radial sorting of axons by Schwann cells. We show that the loss of the C-terminal Tyr-Ala-Met-Leu motif is responsible for P0 mislocalization, as its addition is able to restore correct P0Q215X trafficking in vitro. Lastly, we show that P0Q215X acts through dose-dependent gain of abnormal function, as wild-type P0 is unable to rescue the hypomyelination phenotype. Collectively, these data indicate that alterations at the premyelinating stage, linked to altered targeting of P0, may be responsible for CH, and that different types of gain of abnormal function produce the diverse neuropathy phenotypes associated with MPZ, supporting future allele-specific therapeutic silencing strategies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteína P0 da Mielina/genética , Proteína P0 da Mielina/fisiologia , Animais , Axônios/metabolismo , Membrana Celular/fisiologia , Códon sem Sentido , Doenças Desmielinizantes/genética , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos Endogâmicos BALB C , Mutação , Fenótipo , Transporte Proteico/genética , Células de Schwann/metabolismo
2.
Front Mol Neurosci ; 12: 177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379499

RESUMO

Schwann cells (SCs) are exquisitely sensitive to the elasticity of their environment and their differentiation and capacity to myelinate depend on the transduction of mechanical stimuli by YAP and TAZ. YAP/TAZ, in concert with other transcription factors, regulate several pathways including lipid and sterol biosynthesis as well as extracellular matrix receptor expressions such as integrins and G-proteins. Yet, the characterization of the signaling downstream YAP/TAZ in SCs is incomplete. Myelin sheath production by SC coincides with rapid up-regulation of numerous transcription factors. Here, we show that ablation of YAP/TAZ alters the expression of transcription regulators known to regulate SC myelin gene transcription and differentiation. Furthermore, we link YAP/TAZ to two DNA binding proteins, Cc2d1b and Purß, which have no described roles in myelinating glial cells. We demonstrate that silencing of either Cc2d1b or Purß limits the formation of myelin segments. These data provide a deeper insight into the myelin gene transcriptional network and the role of YAP/TAZ in myelinating glial cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA