Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Physiol ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38050414

RESUMO

It is unclear how skeletal muscle metabolism and mitochondrial function adapt to long duration bed rest and whether changes can be prevented by nutritional intervention. The present study aimed (1) to assess the effect of prolonged bed rest on skeletal muscle mitochondrial function and dynamics and (2) to determine whether micronutrient supplementation would mitigate the adverse metabolic effect of bed rest. Participants were maintained in energy balance throughout 60 days of bed rest with micronutrient supplementation (INT) (body mass index: 23.747 ± 1.877 kg m-2 ; 34.80 ± 7.451 years; n = 10) or without (control) (body mass index: 24.087 ± 2.088 kg m-2 ; 33.50 ± 8.541 years; n = 10). Indirect calorimetry and dual-energy x-ray absorptiometry were used for measures of energy expenditure, exercise capacity and body composition. Mitochondrial respiration was determined by high-resolution respirometry in permeabilized muscle fibre bundles from vastus lateralis biopsies. Protein and mRNA analysis further examined the metabolic changes relating to regulators of mitochondrial dynamics induced by bed rest. INT was not sufficient in preserving whole body metabolic changes conducive of a decrease in body mass, fat-free mass and exercise capacity within both groups. Mitochondrial respiration, OPA1 and Drp1 protein expression decreased with bed rest, with an increase pDrp1s616 . This reduction in mitochondrial respiration was explained through an observed decrease in mitochondrial content (mtDNA:nDNA). Changes in regulators of mitochondrial dynamics indicate an increase in mitochondrial fission driven by a decrease in inner mitochondrial membrane fusion (OPA1) and increased pDrp1s616 . KEY POINTS: Sixty days of -6° head down tilt bed rest leads to significant changes in body composition, exercise capacity and whole-body substrate metabolism. Micronutrient supplementation throughout bed rest did not preserve whole body metabolic changes. Bed rest results in a decrease in skeletal muscle mitochondrial respiratory capacity, mainly as a result of an observed decrease in mitochondrial content. Prolonged bed rest ensues changes in key regulators of mitochondrial dynamics. OPA1 and Drp1 are significantly reduced, with an increase in pDrp1s616 following bed rest indicative of an increase in mitochondrial fission. Given the reduction in mitochondrial content following 60 days of bed rest, the maintenance of regulators of mitophagy in line with the increase in regulators of mitochondrial fission may act to maintain mitochondrial respiration to meet energy demands.

2.
Gut ; 70(6): 1078-1087, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33020209

RESUMO

OBJECTIVE: The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN: We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS: We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS: Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biossíntese , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Duodeno/fisiologia , Sistema Nervoso Entérico/fisiologia , Prebióticos , Receptores Opioides mu/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Adulto , Idoso , Animais , Eixo Encéfalo-Intestino , Diabetes Mellitus Experimental/fisiopatologia , Duodeno/inervação , Encefalinas/genética , Encefalinas/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Microbioma Gastrointestinal , Teste de Tolerância a Glucose , Humanos , Contração Isotônica/efeitos dos fármacos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Liso/fisiologia , Neurônios/fisiologia , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Oligossacarídeos/farmacologia , PPAR gama/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores Opioides mu/genética , Transdução de Sinais
3.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573178

RESUMO

Phenolic compounds have emerged in recent years as an option to face insulin resistance and diabetes. The central aim of this study was: (1) to demonstrate that physiological doses of resveratrol (RSV) or quercetin (Q) can influence glucose metabolism in human myotubes, (2) to establish whether AMP-activated protein kinase (AMPK) and protein kinase B -PKB- (Akt) pathways are involved in this effect. In addition, the effects of these polyphenols on mitochondrial biogenesis and fatty acid oxidation were analysed. Myotubes from healthy donors were cultured for 24 h with either 0.1 µM of RSV or with 10 µM of Q. Glucose metabolism, such as glycogen synthesis, glucose oxidation, and lactate production, were measured with D[U-14C]glucose. ß-oxidation using [1-14C]palmitate as well as the expression of key metabolic genes and proteins by Real Time PCR and Western blot were also assessed. Although RSV and Q increased pgc1α expression, they did not significantly change either glucose oxidation or ß-oxidation. Q increased AMPK, insulin receptor substrate 1 (IRS-1), and AS160 phosphorylation in basal conditions and glycogen synthase kinase 3 (GSK3ß) in insulin-stimulated conditions. RSV tended to increase the phosphorylation rates of AMPK and GSK3ß. Both of the polyphenols increased insulin-stimulated glycogen synthesis and reduced lactate production in human myotubes. Thus, physiological doses of RSV or Q may exhibit anti-diabetic actions in human myotubes.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Glucose/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Quercetina/farmacologia , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP , Adulto , Diabetes Mellitus/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ácidos Graxos/metabolismo , Voluntários Saudáveis , Humanos , Resistência à Insulina , Ácido Láctico/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt , Quercetina/uso terapêutico , Resveratrol/uso terapêutico , Transdução de Sinais
4.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887221

RESUMO

A large number of studies reported an association between elevated circulating and tissue lipid content and metabolic disorders in obesity, type 2 diabetes (T2D) and aging. This state of uncontrolled tissue lipid accumulation has been called lipotoxicity. It was later shown that excess lipid flux is mainly neutralized within lipid droplets as triglycerides, while several bioactive lipid species such as diacylglycerols (DAGs), ceramides and their derivatives have been mechanistically linked to the pathogenesis of insulin resistance (IR) by antagonizing insulin signaling and action in metabolic organs such as the liver and skeletal muscle. Skeletal muscle and the liver are the main sites of glucose disposal in the body and IR in these tissues plays a pivotal role in the development of T2D. In this review, we critically examine recent literature supporting a causal role of DAGs and ceramides in the development of IR. A particular emphasis is placed on transgenic mouse models with modulation of total DAG and ceramide pools, as well as on modulation of specific subspecies, in relation to insulin sensitivity. Collectively, although a wide number of studies converge towards the conclusion that both DAGs and ceramides cause IR in metabolic organs, there are still some uncertainties on their mechanisms of action. Recent studies reveal that subcellular localization and acyl chain composition are determinants in the biological activity of these lipotoxic lipids and should be further examined.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Intolerância à Glucose/patologia , Resistência à Insulina , Lipídeos/toxicidade , Animais , Intolerância à Glucose/induzido quimicamente , Humanos
5.
Biochim Biophys Acta ; 1851(9): 1194-201, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25819461

RESUMO

A decrease in skeletal muscle lipolysis and hormone sensitive-lipase (HSL) expression has been linked to insulin resistance in obesity. The purpose of this study was to identify potential intrinsic defects in lipid turnover and lipolysis in myotubes established from obese and type 2 diabetic subjects. Lipid trafficking and lipolysis were measured by pulse-chase assay with radiolabeled substrates in myotubes from non-obese/non-diabetic (lean), obese/non-diabetic (obese) and obese/diabetic (T2D) subjects. Lipolytic protein content and level of Akt phosphorylation were measured by Western blot. HSL was overexpressed by adenovirus-mediated gene delivery. Myotubes established from obese and T2D subjects had lower lipolysis (-30-40%) when compared to lean, using oleic acid as precursor. Similar observations were also seen for labelled glycerol. Incorporation of oleic acid into diacylglycerol (DAG) and free fatty acid (FFA) level was lower in T2D myotubes, and acetate incorporation into FFA and complex lipids was also lower in obese and/or T2D subjects. Both protein expression of HSL (but not ATGL) and changes in DAG during lipolysis were markedly lower in cells from obese and T2D when compared to lean subjects. Insulin-stimulated glycogen synthesis (-60%) and Akt phosphorylation (-90%) were lower in myotubes from T2D, however, overexpression of HSL in T2D myotubes did not rescue the diabetic phenotype. In conclusion, intrinsic defects in lipolysis and HSL expression co-exist with reduced insulin action in myotubes from obese T2D subjects. Despite reductions in intramyocellular lipolysis and HSL expression, overexpression of HSL did not rescue defects in insulin action in skeletal myotubes from obese T2D subjects.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Insulina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Obesidade/metabolismo , Esterol Esterase/metabolismo , Transporte Biológico , Radioisótopos de Carbono , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diglicerídeos/metabolismo , Feminino , Regulação da Expressão Gênica , Glicerol/metabolismo , Glicogênio/metabolismo , Humanos , Insulina/metabolismo , Lipólise/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Ácido Oleico/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Esterol Esterase/genética
6.
Commun Biol ; 7(1): 346, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509307

RESUMO

The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.


Assuntos
Caquexia , Insuficiência Renal Crônica , Animais , Camundongos , Caquexia/complicações , Caquexia/metabolismo , Estudos Transversais , Insuficiência Renal Crônica/complicações , Redução de Peso , Composição Corporal/fisiologia
7.
Nat Commun ; 14(1): 80, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604419

RESUMO

Fibro-adipogenic progenitors (FAPs) play a crucial role in skeletal muscle regeneration, as they generate a favorable niche that allows satellite cells to perform efficient muscle regeneration. After muscle injury, FAP content increases rapidly within the injured muscle, the origin of which has been attributed to their proliferation within the muscle itself. However, recent single-cell RNAseq approaches have revealed phenotype and functional heterogeneity in FAPs, raising the question of how this differentiation of regenerative subtypes occurs. Here we report that FAP-like cells residing in subcutaneous adipose tissue (ScAT), the adipose stromal cells (ASCs), are rapidly released from ScAT in response to muscle injury. Additionally, we find that released ASCs infiltrate the damaged muscle, via a platelet-dependent mechanism and thus contribute to the FAP heterogeneity. Moreover, we show that either blocking ASCs infiltration or removing ASCs tissue source impair muscle regeneration. Collectively, our data reveal that ScAT is an unsuspected physiological reservoir of regenerative cells that support skeletal muscle regeneration, underlining a beneficial relationship between muscle and fat.


Assuntos
Músculo Esquelético , Doenças Musculares , Humanos , Tecido Adiposo , Diferenciação Celular/genética , Adipogenia/genética
8.
Nat Commun ; 14(1): 6311, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813884

RESUMO

Astronauts in microgravity experience multi-system deconditioning, impacting their inflight efficiency and inducing dysfunctions upon return to Earth gravity. To fill the sex gap of knowledge in the health impact of spaceflights, we simulate microgravity with a 5-day dry immersion in 18 healthy women (ClinicalTrials.gov Identifier: NCT05043974). Here we show that dry immersion rapidly induces a sedentarily-like metabolism shift mimicking the beginning of a metabolic syndrome with a drop in glucose tolerance, an increase in the atherogenic index of plasma, and an impaired lipid profile. Bone remodeling markers suggest a decreased bone formation coupled with an increased bone resorption. Fluid shifts and muscular unloading participate to a marked cardiovascular and sensorimotor deconditioning with decreased orthostatic tolerance, aerobic capacity, and postural balance. Collected datasets provide a comprehensive multi-systemic assessment of dry immersion effects in women and pave the way for future sex-based evaluations of countermeasures.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Feminino , Descondicionamento Cardiovascular/fisiologia , Imersão , Ausência de Peso/efeitos adversos , Simulação de Ausência de Peso
9.
J Clin Endocrinol Metab ; 107(1): e130-e142, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415992

RESUMO

CONTEXT: Adipose tissue (AT) transcriptome studies provide holistic pictures of adaptation to weight and related bioclinical settings changes. OBJECTIVE: To implement AT gene expression profiling and investigate the link between changes in bioclinical parameters and AT gene expression during 3 steps of a 2-phase dietary intervention (DI). METHODS: AT transcriptome profiling was obtained from sequencing 1051 samples, corresponding to 556 distinct individuals enrolled in a weight loss intervention (8-week low-calorie diet (LCD) at 800 kcal/day) followed with a 6-month ad libitum randomized DI. Transcriptome profiles obtained with QuantSeq sequencing were benchmarked against Illumina RNAseq. Reverse transcription quantitative polymerase chain reaction was used to further confirm associations. Cell specificity was assessed using freshly isolated cells and THP-1 cell line. RESULTS: During LCD, 5 modules were found, of which 3 included at least 1 bioclinical variable. Change in body mass index (BMI) connected with changes in mRNA level of genes with inflammatory response signature. In this module, change in BMI was negatively associated with changes in expression of genes encoding secreted protein (GDF15, CCL3, and SPP1). Through all phases of the DI, change in GDF15 was connected to changes in SPP1, CCL3, LIPA and CD68. Further characterization showed that these genes were specific to macrophages (with LIPA, CD68 and GDF15 expressed in anti-inflammatory macrophages) and GDF15 also expressed in preadipocytes. CONCLUSION: Network analyses identified a novel AT feature with GDF15 upregulated with calorie restriction induced weight loss, concomitantly to macrophage markers. In AT, GDF15 was expressed in preadipocytes and macrophages where it was a hallmark of anti-inflammatory cells.


Assuntos
Tecido Adiposo/patologia , Dieta Redutora , Redes Reguladoras de Genes , Fator 15 de Diferenciação de Crescimento/metabolismo , Obesidade/patologia , Transcriptoma , Redução de Peso , Tecido Adiposo/metabolismo , Adulto , Biomarcadores/metabolismo , Índice de Massa Corporal , Feminino , Seguimentos , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Masculino , Obesidade/metabolismo , Prognóstico
10.
J Cachexia Sarcopenia Muscle ; 12(6): 1690-1703, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668663

RESUMO

BACKGROUND: Fasting is attracting an increasing interest as a potential strategy for managing diseases, including metabolic disorders and complementary cancer therapy. Despite concerns of clinicians regarding protein catabolism and muscle loss, evidence-based clinical data in response to long-term fasting in healthy humans are scarce. The objective of this study was to measure clinical constants, metabolic, and muscular response in healthy men during and after a 10 day fast combined with a physical activity programme. METHODS: Sixteen men (44 ± 14 years; 26.2 ± 0.9 kg/m2 ) fasted with a supplement of 200-250 kcal/day and up to 3 h daily low-intensity physical activity according to the peer-reviewed Buchinger Wilhelmi protocol. Changes in body weight (BW) and composition, basal metabolic rate (BMR), physical activity, muscle strength and function, protein utilization, inflammatory, and metabolic status were assessed during the 10 day fast, the 4 days of food reintroduction, and at 3 month follow-up. RESULTS: The 10 day fast decreased BW by 7% (-5.9 ± 0.2 kg, P < 0.001) and BMR by 12% (P < 0.01). Fat mass and lean soft tissues (LST) accounted for about 40% and 60% of weight loss, respectively, -2.3 ± 0.18 kg and -3.53 ± 0.13 kg, P < 0.001. LST loss was explained by the reduction in extracellular water (44%), muscle and liver glycogen and associated water (14%), and metabolic active lean tissue (42%). Plasma 3-methyl-histidine increased until Day 5 of fasting and then decreased, suggesting that protein sparing might follow early proteolysis. Daily steps count increased by 60% (P < 0.001) during the fasting period. Strength was maintained in non-weight-bearing muscles and increased in weight-bearing muscles (+33%, P < 0.001). Glycaemia, insulinemia, blood lipids, and blood pressure dropped during the fast (P < 0.05 for all), while non-esterified fatty acids and urinary beta-hydroxybutyrate increased (P < 0.01 for both). After a transient reduction, inflammatory cytokines returned to baseline at Day 10 of fasting, and LST were still lower than baseline values (-2.3% and -3.2%, respectively; P < 0.05 for both). CONCLUSIONS: A 10 day fast appears safe in healthy humans. Protein loss occurs in early fast but decreases as ketogenesis increases. Fasting combined with physical activity does not negatively impact muscle function. Future studies will need to confirm these first findings.


Assuntos
Adaptação Fisiológica , Jejum , Adulto , Exercício Físico , Humanos , Masculino , Pessoa de Meia-Idade , Músculos , Estudos Prospectivos
11.
Front Physiol ; 11: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116795

RESUMO

Physical activity reduces cardiometabolic risk, while physical inactivity increases chronic diseases risk. This led to the idea that exercise-induced muscle contraction contributes to metabolic regulation and health. It is now well established that skeletal muscle, through the release of endocrine factors, i.e., so-called myokines, crosstalk with metabolic organs such as adipose tissue, liver and pancreas. Recent advances suggested that a number of myokines are able to modulate adipose tissue metabolism and thermogenic activity, liver endogenous glucose production and ß-cell insulin secretion. This novel paradigm offers a compelling hypothesis and molecular basis to explain the link between physical inactivity and chronic diseases. Herein, we review major findings and recent advances linking exercise, myokines secretion and inter-organ crosstalk. Identifying the molecular mediators linking physical activity to metabolic health could open the path toward novel therapeutic targets in metabolic diseases.

12.
Mol Metab ; 42: 101058, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32739449

RESUMO

OBJECTIVE: Most studies routinely use overnight or 6 h of fasting before testing metabolic glucose homeostasis in mice. Other studies used empirically shorter fasting times (<6 h). We attempted to determine the shortest fasting time required for optimal insulin responsiveness while minimizing metabolic stress. METHODS: A course of fasting for up to 24 h (0, 2, 4, 6, 12, and 24 h) was conducted in C57Bl/6J male mice. Body weight, metabolic parameters, and insulin tolerance were measured in each experimental group. The organs were collected at the same time on separate occasions and glycogen and metabolic gene expression were measured in the liver and skeletal muscle. RESULTS: Our data show that blood glucose levels do not significantly change during a 6 h fast, while plasma insulin levels decrease to similar levels between 2 h and 6 h of fasting. During overnight (12 h) and 24 h fasts, a robust decrease in blood glucose and plasma insulin was observed along with a profound depletion in liver glycogen content. Insulin tolerance was comparable between baseline and 6 h fasts while 4 h and 6 h fasts were associated with a greater depletion of liver glycogen than 2 h fasts, impacting the glucose counter-regulatory response. Fasting induced progressive weight loss that was attenuated at thermoneutrality. Fasting longer than 4 h induced major body weight loss (>5%) and significant changes in catabolic gene expression in the liver and skeletal muscle. CONCLUSION: Collectively, these data suggest that 2 h of fasting appears optimal for the assessment of insulin tolerance in mice as this duration minimizes major metabolic stress and weight loss.


Assuntos
Jejum/metabolismo , Teste de Tolerância a Glucose/métodos , Insulina/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Jejum/sangue , Glucose/metabolismo , Glicogênio/metabolismo , Insulina/sangue , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
13.
Front Physiol ; 11: 575363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364972

RESUMO

Exercise is a powerful and effective preventive measure against chronic diseases by increasing energy expenditure and substrate mobilization. Long-duration acute exercise favors lipid mobilization from adipose tissue, i.e., lipolysis, as well as lipid oxidation by skeletal muscles, while chronic endurance exercise improves body composition, facilitates diet-induced weight loss and long-term weight maintenance. Several hormones and factors have been shown to stimulate lipolysis in vitro in isolated adipocytes. Our current knowledge supports the view that catecholamines, atrial natriuretic peptide and insulin are the main physiological stimuli of exercise-induced lipolysis in humans. Emerging evidences indicate that contracting skeletal muscle can release substances capable of remote signaling to organs during exercise. This fascinating crosstalk between skeletal muscle and adipose tissue during exercise is currently challenging our classical view of the physiological control of lipolysis, and provides a conceptual framework to better understand the pleotropic benefits of exercise at the whole-body level.

14.
Appl Physiol Nutr Metab ; 45(2): 169-179, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31276628

RESUMO

Several studies have shown that human primary myotubes retain the metabolic characteristic of their donors in vitro. We have demonstrated, along with other researchers, a reduced lipid turnover and fat oxidation rate in myotubes derived from obese donors with and without type 2 diabetes (T2D). Because exercise is known to increase fat oxidative capacity in skeletal muscle, we investigated if in vitro exercise could restore primary defects in lipid handling in myotubes of obese individuals with and without T2D compared with lean nondiabetic donors. Primary myotubes cultures were derived from biopsies of lean, obese, and T2D subjects. One single bout of long-duration exercise was mimicked in vitro by electrical pulse stimulation (EPS) for 24 h. Lipid handling was measured using radiolabeled palmitate, metabolic gene expression by real-time qPCR, and proteins by Western blot. We first showed that myotubes from obese and T2D donors had increased uptake and incomplete oxidation of palmitate. This was associated with reduced mitochondrial respiratory chain complex II, III, and IV protein expression in myotubes from obese and T2D subjects. EPS stimulated palmitate oxidation in lean donors, while myotubes from obese and T2D donors were refractory to this effect. Interestingly, EPS increased total palmitate uptake in myotubes from lean donors while myotubes from T2D donors had a reduced rate of palmitate uptake into complex lipids and triacylglycerols. Novelty Myotubes from obese and T2D donors are characterized by primary defects in palmitic acid handling. Both obese and T2D myotubes are partially refractory to the beneficial effect of exercise on lipid handling.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Exercício Físico , Metabolismo dos Lipídeos , Fibras Musculares Esqueléticas/fisiologia , Obesidade/metabolismo , Regulação da Expressão Gênica , Humanos
15.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32106110

RESUMO

We hypothesized that skeletal muscle contraction produces a cellular stress signal, triggering adipose tissue lipolysis to sustain fuel availability during exercise. The present study aimed at identifying exercise-regulated myokines, also known as exerkines, able to promote lipolysis. Human primary myotubes from lean healthy volunteers were submitted to electrical pulse stimulation (EPS) to mimic either acute intense or chronic moderate exercise. Conditioned media (CM) experiments with human adipocytes were performed. CM and human plasma samples were analyzed using unbiased proteomic screening and/or ELISA. Real-time qPCR was performed in cultured myotubes and muscle biopsy samples. CM from both acute intense and chronic moderate exercise increased basal lipolysis in human adipocytes. Growth and differentiation factor 15 (GDF15) gene expression and secretion increased rapidly upon skeletal muscle contraction. GDF15 protein was upregulated in CM from both acute and chronic exercise-stimulated myotubes. We further showed that physiological concentrations of recombinant GDF15 protein increased lipolysis in human adipose tissue, while blocking GDF15 with a neutralizing antibody abrogated EPS CM-mediated lipolysis. We herein provide the first evidence to our knowledge that GDF15 is a potentially novel exerkine produced by skeletal muscle contraction and able to target human adipose tissue to promote lipolysis.


Assuntos
Exercício Físico/fisiologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Lipólise/fisiologia , Músculo Esquelético/metabolismo , Adulto , Humanos , Masculino
16.
Cell Rep ; 32(8): 108075, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846132

RESUMO

Atrial natriuretic peptide (ANP) is a cardiac hormone controlling blood volume and pressure in mammals. It is still unclear whether ANP controls cold-induced thermogenesis in vivo. Here, we show that acute cold exposure induces cardiac ANP secretion in mice and humans. Genetic inactivation of ANP promotes cold intolerance and suppresses half of cold-induced brown adipose tissue (BAT) activation in mice. While white adipocytes are resistant to ANP-mediated lipolysis at thermoneutral temperature in mice, cold exposure renders white adipocytes fully responsive to ANP to activate lipolysis and a thermogenic program, a physiological response that is dramatically suppressed in ANP null mice. ANP deficiency also blunts liver triglycerides and glycogen metabolism, thus impairing fuel availability for BAT thermogenesis. ANP directly increases mitochondrial uncoupling and thermogenic gene expression in human white and brown adipocytes. Together, these results indicate that ANP is a major physiological trigger of BAT thermogenesis upon cold exposure in mammals.


Assuntos
Fator Natriurético Atrial/metabolismo , Termogênese/fisiologia , Animais , Humanos , Masculino , Camundongos , Camundongos Knockout
17.
Front Neurosci ; 13: 33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30766473

RESUMO

Propranolol is the first-line treatment for infants suffering from infantile hemangioma. Recently, some authors raised the question of potential neurologic side effects of propranolol due to its lipophilic nature and thus its ability to passively cross the blood-brain barrier (BBB) and accumulate into the brain. Hydrophilic beta-blockers, such as atenolol and nadolol, where therefore introduced in clinical practice. In addition to their classical mode of action in the brain, circulating factors may modulate the release of reactive oxygen/nitrogen species (ROS/RNS) from endothelial cells that compose the BBB without entering the brain. Due to their high capacity to diffuse across membranes, ROS/RNS can reach neurons and modify their activity. The aim of this study was to investigate other mechanisms of actions in which these molecules may display a central effect without actually crossing the BBB. We first performed an oral treatment in mice to measure the accumulation of propranolol, atenolol and nadolol in different brain regions in vivo. We then evaluated the ability of these molecules to induce the release of nitric oxide (NO) and hydrogen peroxide (H2O2) ex vivo in the hypothalamus. As expected, propranolol is able to cross the BBB and is found in brain tissue in higher amounts than atenolol and nadolol. However, all of these beta-blockers are able to induce the secretion of signaling molecules (i.e., NO and/or H2O2) in the hypothalamus, independently of their ability to cross the BBB, deciphering a new potential deleterious impact of hydrophilic beta-blockers in the brain.

18.
Front Physiol ; 10: 321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984019

RESUMO

A body mass loss has been consistently observed in astronauts. This loss is of medical concern since energy deficit can exacerbate some of the deleterious physiological changes observed during space flight including cardiovascular deconditioning, bone density, muscle mass and strength losses, impaired exercise capacity, and immune deficiency among others. These may jeopardize crew health and performance, a healthy return to Earth and mission's overall success. In the context of planning for planetary exploration, achieving energy balance during long-term space flights becomes a research and operational priority. The regulation of energy balance and its components in current longer duration missions in space must be re-examined and fully understood. The purpose of this review is to summarize current understanding of how energy intake, energy expenditure, and hence energy balance are regulated in space compared to Earth. Data obtained in both actual and simulated microgravity thus far suggest that the obligatory exercise countermeasures program, rather than the microgravity per se, may be partly responsible for the chronic weight loss in space. Little is known of the energy intake, expenditure, and balance during the intense extravehicular activities which will become increasingly more frequent and difficult. The study of the impact of exercise on energy balance in space also provides further insights on lifestyle modalities such as intensity and frequency of exercise, metabolism, and the regulation of body weight on Earth, which is currently a topic of animated debate in the field of energy and obesity research. While not dismissing the significance of exercise as a countermeasure during space flight, data now challenge the current exercise countermeasure program promoted and adopted for many years by all the International Space Agencies. An alternative exercise approach that has a minimum impact on total energy expenditure in space, while preventing muscle mass loss and other physiological changes, is needed in order to better understand the in-flight regulation of energy balance and estimate daily energy requirements. A large body of data generated on Earth suggests that alternate approaches, such as high intensity interval training (HIIT), in combination or not with sessions of resistive exercise, might fulfill such needs.

19.
J Clin Endocrinol Metab ; 103(5): 1910-1920, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29546280

RESUMO

Context: The effects of energy-balanced bed rest on metabolic flexibility have not been thoroughly examined. Objective: We investigated the effects of 21 days of bed rest, with and without whey protein supplementation, on metabolic flexibility while maintaining energy balance. We hypothesized that protein supplementation mitigates metabolic inflexibility by preventing muscle atrophy. Design and Setting: Randomized crossover longitudinal study conducted at the German Aerospace Center, Cologne, Germany. Participants and Interventions: Ten healthy men were randomly assigned to dietary countermeasure or isocaloric control diet during a 21-day bed rest. Outcome Measures: Before and at the end of the bed rest, metabolic flexibility was assessed during a meal test. Secondary outcomes were glucose tolerance by oral glucose tolerance test, body composition by dual energy X-ray absorptiometry, ectopic fat storage by magnetic resonance imaging, and inflammation and oxidative stress markers. Results: Bed rest decreased the ability to switch from fat to carbohydrate oxidation when transitioning from fasted to fed states (i.e., metabolic inflexibility), antioxidant capacity, fat-free mass (FFM), and muscle insulin sensitivity along with greater fat deposition in muscle (P < 0.05 for all). Changes in fasting insulin and inflammation were not observed. However, glucose tolerance was reduced during acute overfeeding. Protein supplementation did not prevent FFM loss and metabolic alterations. Conclusions: Physical inactivity triggers metabolic inflexibility, even when energy balance is maintained. Although reduced insulin sensitivity and increased fat deposition were observed at the muscle level, systemic glucose intolerance was detected only in response to a moderately high-fat meal. This finding supports the role of physical inactivity in metabolic inflexibility and suggests that metabolic inflexibility precedes systemic glucose intolerance.


Assuntos
Tecido Adiposo/metabolismo , Repouso em Cama/efeitos adversos , Biomarcadores/metabolismo , Metabolismo Energético/fisiologia , Intolerância à Glucose/diagnóstico , Intolerância à Glucose/etiologia , Resistência à Insulina/fisiologia , Adiposidade/fisiologia , Adulto , Biomarcadores/sangue , Composição Corporal/fisiologia , Estudos Cross-Over , Dieta , Diagnóstico Precoce , Intolerância à Glucose/metabolismo , Humanos , Estudos Longitudinais , Masculino , Fatores de Tempo
20.
Horm Mol Biol Clin Investig ; 26(1): 43-52, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26741351

RESUMO

Over the past decades, obesity and its metabolic co-morbidities such as type 2 diabetes (T2D) developed to reach an endemic scale. However, the mechanisms leading to the development of T2D are still poorly understood. One main predictor for T2D seems to be lipid accumulation in "non-adipose" tissues, best known as ectopic lipid storage. A growing body of data suggests that these lipids may play a role in impairing insulin action in metabolic tissues, such as liver and skeletal muscle. This review aims to discuss recent literature linking ectopic lipid storage and insulin resistance, with emphasis on lipid deposition in skeletal muscle. The link between skeletal muscle lipid content and insulin sensitivity, as well as the mechanisms of lipid-induced insulin resistance and potential therapeutic strategies to alleviate lipotoxic lipid pressure in skeletal muscle will be discussed.


Assuntos
Transtornos do Metabolismo dos Lipídeos/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Tecido Adiposo/metabolismo , Animais , Humanos , Resistência à Insulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA