Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(23): 16505-16513, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38812442

RESUMO

We present the measurement and analysis of the 2OH stretching band of methanol between 7165 cm-1 and 7230 cm-1 cooled down to 26 ± 12 K in a buffer gas cooling experiment. Measurements were performed with a cavity ring-down spectrometer having a detection limit αmin = 2 × 10-10 cm-1. A total of 350 rovibrational transitions were assigned and 62 rovibrational transitions were tentatively assigned. This assignment was performed using the pattern recognition method developed by Rakvoský et al. [Phys. Chem. Chem. Phys., 2021, 23, 20193-20200]. In this work, we extended their method by using information on the relative intensities of the transitions to add one criterion to the validation of the assignments, allowing us to firmly assign 188 additional rovibrational transitions and to tentatively assign 14 more compared to the ir work.

2.
Anal Chem ; 95(36): 13620-13628, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37610942

RESUMO

The molecular environment has an important impact on the ionization mechanism in time-of-flight secondary ion mass spectrometry (ToF-SIMS). In complex samples, desorption/ionization, and thus the detection of a molecular signal, can be hampered by molecular entanglement, ionization-suppressive neighbors, or even an unfavorable sample substrate. Here, a method called microvolume expansion is developed to overcome these negative effects. Large argon clusters are able to transfer biomolecules from a target to a collector in vacuum. In this study, argon gas cluster ion beams (Arn+-GCIB with n centered around 3000 or 5000) are used to expand a microvolume from the sample to a collector, which is a material ideally enhancing the ionization yield. The collector is then analyzed using a liquid metal ion gun. The signal amplification factor corresponding to the expansion of phosphatidylcholine (PC) lipid on collectors partially covered with acidic matrices was evaluated as an initial proof of concept. In one experiment, the PC expansion on a pattern of four drop-casted matrix-assisted laser desorption/ionization matrices led to the selection of α-cyano-4-hydroxycinnamic (CHCA) as the optimal candidate for cationic PC detection. The ion signal is increased by at least three orders of magnitude when PC was expanded using 10 keV Ar3000+ and Ar5000+ on a sublimated layer of CHCA. Finally, the expansion of the gray matter of a mouse on different materials (Si, Au-coated Si, CHCA, and polyethylene) was achieved with varying degrees of success, demonstrating the potential of the method to further analyze complex and fragile biological assemblies.

3.
J Phys Chem A ; 127(16): 3668-3674, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37067811

RESUMO

Spectra of water─CO2 dimers are studied using a tunable mid-infrared source to probe a pulsed slit jet supersonic expansion. H2O-CO2 and D2O-CO2 are observed in the CO2 ν3 fundamental region (≈2350 cm-1), D2O-CO2 is also observed in the D2O ν3 fundamental region (≈2790 cm-1), and HDO-CO2 is observed in the HDO O-D stretch fundamental region (≈2720 cm-1), all for the first time in these regions. Analysis of the spectra yields excited state rotational parameters and vibrational shifts. They also yield the first experimental values of the ground state internal rotation tunneling splittings for D2O-CO2 (0.003 cm-1) and HDO-CO2 (0.0234 cm-1). The latter value is a direct determination made possible by the reduced symmetry of HDO-CO2. These results provide stringent and easily interpreted tests for theoretical water-CO2 potential energy surface calculations.

4.
Phys Chem Chem Phys ; 24(38): 23164-23172, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36128879

RESUMO

The Doppler broadened R(0) and R(1) lines of the (2-0) vibrational band of HD have been measured at liquid nitrogen temperature and at pressures of 2 Pa, with a comb referenced continuous-wave cavity ring-down spectrometer set-up. Transition frequencies of 214905335185 kHz and 217105181898 kHz were derived from 33 and 83 recordings, with corresponding root mean squared deviation of 53 and 33 kHz for the R(0) and R(1) transition, respectively. This is the first sub-MHz frequency determination of the R(0) transition frequency and represents a three order of magnitude accuracy improvement compared to literature. The R(1) transition frequency is in very good agreement with previous determinations in saturation regime reported with similar accuracy. To achieve such accuracy, the transition frequency of the (101)-(000) 211-312 line of H216O interfering with the R(0) line had to be precisely determined and is reported with a standard error of 100 Hz at 214904329826.49(10) kHz (relative uncertainty of 5 × 10-13). These measurement sets provide stringent reference values for validating future advances in the theoretical description of the hydrogen (and water) molecule.

5.
Phys Chem Chem Phys ; 22(31): 17427-17447, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32568320

RESUMO

Ionised cluster beams have been produced and employed for thin film deposition and surface processing for half a century. In the last two decades, kiloelectronvolt cluster ions have also proved to be outstanding for surface characterisation by secondary ion mass spectrometry (SIMS), because their sputter and ion yields are enhanced in a non-linear fashion with respect to monoatomic projectiles, with a resulting step change of sensitivity for analysis and imaging. In particular, large gas cluster ion beams, or GCIB, have now become a reference in organic surface and thin film analysis using SIMS and X-ray photoelectron spectroscopy (XPS). The reason is that they induce soft molecular desorption and offer the opportunity to conduct damageless depth-profiling and 3D molecular imaging of the most sensitive organic electronics and biological samples, with a nanoscale depth resolution. In line with these recent developments, the present review focuses on rather weakly-bound, light-element cluster ions, such as noble or other gas clusters, and water or alcohol nanodroplets (excluding clusters made of metals, inorganic salts or ionic liquids) and their interaction with surfaces (essentially, but not exclusively, organic). The scope of this article encompasses three aspects. The first one is the fundamentals of large cluster impacts with surfaces, using the wealth of information provided by molecular dynamics simulations and experimental observations. The second focus is on recent applications of large cluster ion beams in surface characterisation, including mass spectrometric analysis and 2D localisation of large molecules, molecular depth-profiling and 3D molecular imaging. Finally, the perspective explores cutting edge developments, involving (i) new types of clusters with a chemistry designed to enhance performance for mass spectrometry imaging, (ii) the use of cluster fragment ion backscattering to locally retrieve physical surface properties and (iii) the fabrication of new biosurface and thin film architectures, where large cluster ion beams are used as tools to transfer biomolecules in vacuo from a target reservoir to any collector substrate.


Assuntos
Íons/química , Imagem Molecular , Sondas Moleculares , Álcoois/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Propriedades de Superfície , Água/química
6.
ACS Appl Mater Interfaces ; 16(28): 37248-37254, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957146

RESUMO

Gas cluster ion beam (GCIB)-assisted deposition is used to build multilayered protein-based structures. In this process, Ar3000-5000+ clusters bombard and sputter molecules from a reservoir (target) to a collector, an operation that can be sequentially repeated with multiple targets. The process occurs under a vacuum, making it adequate for further sample conservation in the dry state, since many proteins do not have long-term storage stability in the aqueous state. First of all, the stability in time and versatility in terms of molecule selection are demonstrated with the fabrication of peptide multilayers featuring a clear separation. Then, lysozyme and trypsin are used as protein models to show that the activity remaining on the collector after deposition is linearly proportional to the argon ion dose. The energy per atom (E/n) of the Ar clusters is a parameter that was also changed for lysozyme deposition, and its increase negatively affects activity. The intact detection of larger protein molecules by SDS-PAGE gel electrophoresis and a bioassay (trypsin at ≈25 kDa and glucose oxidase (GOx) at ≈80 kDa) is demonstrated. Finally, GOx and horseradish peroxidase, two proteins involved in the same enzymatic cascade, are successively deposited on ß-d-glucose to build an on-demand release material in which the enzymes and the substrate (ß-d-glucose) are combined in a dry trilayer, and the reaction occurs only upon reintroduction in aqueous medium.


Assuntos
Glucose Oxidase , Peroxidase do Rábano Silvestre , Muramidase , Tripsina , Muramidase/química , Muramidase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Tripsina/química , Tripsina/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Peptídeos/química , Animais , Glucose/química
7.
J Phys Chem A ; 117(50): 13767-74, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24111882

RESUMO

The high-resolution infrared spectra of the ν1 + ν3 (2CH) band of the Ar-C2H2 complex has been recorded from 6544 to 6566 cm(-1). The previously reported K(a) = 1 ← 0, 2 ← 1, and 0 ← 1 subbands were observed and the K(a) = 1 ← 2, 2 ← 3, and 3 ← 2 subbands were assigned for the first time. The intermolecular potential energy surface of this complex has been calculated ab initio and optimized by fitting the new high-resolution data. Refined intermolecular potential energy surfaces have been obtained for the ground vibrational state and for the excited v1 = v3 = 1 stretching state. For the former state, the results of the analysis are satisfactory and the microwave transitions of the complex are reproduced with a root-mean-square deviation of 5 MHz. For the latter state, systematic discrepancies arise in the analysis.

8.
ACS Appl Bio Mater ; 5(7): 3180-3192, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35801397

RESUMO

Surface biofunctionalization with proteins is the key to many biomedical applications. In this study, a solvent-free method for the controlled construction of protein thin films is reported. Using large argon gas cluster ion beams, proteins are sputtered from a target (a pool of pure proteins), and collected on a chosen substrate, being nearly any solid material. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed the presence of intact protein molecules on the collectors. Furthermore, lowering the energy per atom in the cluster projectiles down to 1 eV/atom allowed more than 60% of bradykinin molecules to be transferred intact. This protein deposition method offers a precise control of the film thickness as the transferred protein quantity is proportional to the argon clusters ion dose reached for the transfer. This major feature enables building protein films from (sub)mono- to multilayers, without upper limitation of the thickness. A procedure was developed to measure the film thickness in situ the ToF-SIMS instrument. The versatility and potential of this soft-landing alternative for further applications is demonstrated on the one hand by building a protein thin film at the surface of paper, a substrate hardly compatible with solution-based adsorption methods. On the other hand, the possibility to achieve alternated multilayer buildup is demonstrated with the construction of a bilayer composed of bradykinin and Irganox, with the two layers well separated. These results lay the first stone toward original and complex multilayers that could previously not be considered with solution-based adsorption methods, and this regardless of the substrate nature.


Assuntos
Bradicinina , Espectrometria de Massa de Íon Secundário , Argônio/química , Espectrometria de Massa de Íon Secundário/métodos
9.
Phys Chem Chem Phys ; 13(2): 751-4, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21049108

RESUMO

The first observation in the near infrared of the (12)C(2)H(2)-Kr van der Waals complex is reported, leading to the determination of rotational constants and the prediction of the 1 0 1 (J'K(a)'K(c)') ← 0 0 0 (J''K(a)''K(c)'') microwave transition occurring at 3.334(4) MHz, useful for astrophysical detection.

10.
Rev Sci Instrum ; 92(3): 033307, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820109

RESUMO

Spectroscopy of transient anions and radicals by gated and accelerated time-of-flight experiment is a new spectrometer developed in UCLouvain. This instrument measures high-resolution photodissociation spectra of mass-selected ions by the combination of a time-of-flight spectrometer including a specific gating, bunching, and re-referencing unit with a nanosecond pulsed dye laser, a pulsed deflection, and an energy selector. The ionic species are generated in a supersonic jet expansion by means of an electric discharge or by the impact of electrons coming from an electron gun. The versatility of the molecular systems that can be addressed by this instrument is illustrated by the presentation of mass spectra of cations, anions, and ionic clusters formed from different gas mixtures and backing pressures. The high-resolution spectrum of the A~2Σ+(002)←X~2Π3/2(000) and A~2Σ+(002)←X~2Π1/2(000) rovibronic bands of N2O+ has been measured and analyzed to provide refined molecular parameters in the A~2Σ+(002) upper state. The A~2Σ+(002)←X~2Π3/2(000) band has been used to evaluate the quality of the experimental setup in terms of rotational temperature, time of measurement for certain signal to noise ratio, and the accuracy of the determination of the wavenumber scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA